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algorithms to verify our confidentiality properties with you. Our collaborations
resulted in two papers that are presented in Chapter 5 and Chapter 6 of this
thesis. I also learned a lot from you, and you are an inspiration on how to make
things as simple as possible.

I would like to thank the Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO) who funded my work via the SLALOM project (Security by
Logic for Multi-threaded Applications).

In addition, I would also like to take this opportunity to express my appre-
ciation to Catuscia Palamidessi and Kostas Chatzikokolakis for many fruitful
discussions during my visit to your group. I was so lucky that I attended the
FOSAD 2012 summer school where Catuscia gave a lecture about quantita-
tive analysis of information flow. This lecture has had a strong impact on the
direction of my research.

I am also very grateful to the members of the committee, for their time and
for their valuable comments on the manuscript.

I also send special thanks to Marina Zaharieva-Stojanovski and Stefano
Schivo, who have been the most loyal friends. You guys made my PhD life
enjoyable and a lot easier. You are simply friends indeed. You always stay by
my side, until the last moment of my PhD journey: being my paranymphs! This
certainly makes me feel confident during my defense. Stefano, maybe it is now
the time to say sorry for your suffering of being my office-mate in almost three
years. Sorry for being bossy sometimes (please confirm that it is only occasional
:)).

I would like to thank all my colleagues at the FMT group at the University of
Twente, for creating a very nice working environment, for many social and sport
events we had together. You are brilliant friends and colleagues who inspired
me over these four years. Arend Rensink, thank you for creating a nice social
environment in/outside the group such that we have chances to get together.
Gijs Kant, you are a good companion on any social and sport event. Your carrot
cake is one of my favorite cakes ever. Mark Timmer, thank you for being who
you are: smart, nice, friendly and helpful (I hope these adjectives are enough to
describe you, or do you want more? :)). Waheed Ahmad, thank you for joining
us in the run, and wearing a suit to the Christmas dinner even when you did not
want to. Thank you for cooking me a Pakistan dinner. It was a little bit spicy;
but after drinking almost a full bottle of orange juice, I think I did enjoy the
dinner. My acknowledgments are not complete if I do not mention our wonderful



Acknowledgements ix

Scrum team: Lesley Wevers, Saeed Darabi, Afshin Amighi, Marina, Stefan, and
Wojciech Mostowski. I think I will miss our Scrum meetings for a long time.
Now I have a habit to ask myself the same question every morning “what did
I do yesterday?”, and put an effort to make an impression that yesterday was
a very productive day. I would also like to mention Tom van Dijk, Alfons
Laarman, and Bugra M. Yildiz for... everything :); your names should be in my
acknowledgments.

I would also like to acknowledge Joke Lammerink, not only for the admin-
istrative support during the time I worked in Enschede, but also for your kind
care, and Axel Belinfante, for your help with the technical problems.

Besides, I also thank all students of the Vietnamese community in Enschede
for having created warm, relaxed and friendly activities. I would also like to
pay high regards to all my school and college teachers in Vietnam, especially my
father — my first Mathematics teacher. You gave me the love of Mathematics
and Science, and are the inspiration to my pursuit of knowledge.

I save the best for last. I dedicate this thesis to my parents and my brother,
who always give me support and encouragement. You are the motivation for me
to reach this far. I love you very much, and this sometimes cannot be expressed
by words.

Ngo Minh Tri,
Enschede, 2014.





Abstract

In today’s information-based society, guaranteeing information security plays an
important role in all aspects of life: governments, military, companies, financial
information systems, web-based services etc. With the existence of Internet,
Google, and shared-information networks, it is easier than ever to access infor-
mation. However, it is also harder than ever to protect the security of sensitive
information. If an attacker can access important information, he can bring down
a company or even harm people’s lives. Thus, there are growing challenges of
how best to keep private information processed by computing systems secure.

With the trend of multiple cores on a chip and parallel systems like general-
purpose graphic processing units, applications implemented in a multi-threaded
fashion are becoming the standard. Protecting the confidentiality of information
manipulated by multi-threaded programs is an important problem, but also a
challenge. Firstly, since the program execution involves the scheduler — to
decide the ordering of executed threads — data behave in an unpredictable
way; and thus, it is difficult to predict what an attacker can observe during the
execution. Secondly, with the help of more powerful computing techniques, the
attackers are more and more powerful, i.e., they can observe the traces of public
data during the execution, and are even able to choose the scheduler to limit
the set of possible program traces. Many researchers are concerned with this
challenge, but most of the approaches are not sufficient, or very restrictive. The
goal of this thesis is to propose more suitable and practically efficient methods
to analyze information flow of multi-threaded programs.

Firstly, we formalize two qualitative confidentiality properties, (1) one for
non-deterministic programs, where we do not take into account the probabilis-
tic behavior of programs and schedulers, and (2) another one for probabilistic
programs, where we assume to have knowledge about the probability of schedul-
ing events. These two properties are scheduler-specific, i.e., if data traces of the
program execution satisfy these properties, the program is guaranteed not to
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xii Abstract

leak information under the scheduler used to deploy the program. We compare
these formalizations with the existing proposals in the literature, and show that
our definitions better approximate the intuitive understanding of confidentiality,
which unfortunately cannot be formalized directly.

Secondly, we propose verification methods to verify our information flow
properties, i.e., logic-based and efficient algorithmic verification methods. These
methods not only give precise and efficient verifications for confidentiality prop-
erties, but also are relevant outside the security context. Our approaches have
two advantages: (1) many other formalizations of confidentiality in the literature
can also be verified by minor modifications of our algorithms, and (2) we can
synthesize attacks for insecure programs, based on counter-example generation
techniques. Since the verification is precise, if it fails, a counter-example can
be produced, describing a possible attack on the security of the program. This
idea of synthesizing attacks for information flow properties of multi-threaded
programs has not been previously published in the literature. We also develop
a tool which contains these techniques, and show its practical application on
some case studies.

Counter-examples give us the reasons why a program fails a confidentiality
requirement. However, in same cases, it is also interesting to know the quantity
of the information flow that has been revealed. A quantitative security policy
offers a richer security policy than the traditional qualitative properties, since
the amount of leakage can be used to decide whether we can tolerate the minor
leakage.

Classical quantitative information flow analysis often considers a system as
an information-theoretic channel, where private data are the only input and
public data are the output. First of all, this thesis extends this classical context
by considering systems where the attacker is able to influence the initial values
of public data, which should also be considered as an input of the channel. We
adapt the classical view of information-theoretic channels in order to quantify
information flow of programs that contain both private and public inputs.

Additionally, we show that our measure can also be used to reason about the
case where a system operator on purpose adds noise to the output, instead of
always producing the correct output. The noisy outcomes are used to reduce the
correlation between the output and the input, and thus to increase the remaining
uncertainty of the attacker about the secret. However, even though the noisy
outcomes enhance the security, they reduce the reliability of the program. We
show how given a certain noisy output policy, the increase in security and the
decrease in reliability can be quantified.

Finally, this thesis presents a novel model of analysis for multi-threaded
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programs where the attacker is able to select the scheduling policy. This model
does not follow the traditional information-theoretic channel setting. In this
analysis, we first study what extra information an attacker can get if he knows
the scheduler’s choices, and then integrate this information into the transition
system modeling the program execution. Via a case study, we compare this
approach with the traditional information-theoretic models, and show that this
approach gives more intuitive-matching results.
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Chapter 1

Introduction

1.1 How to be secure

We are living in an information-based society, where information is an important
strategic resource. Thus, guaranteeing information security plays a crucial role
in every aspect of life. Governments, military, companies, financial information
systems, as well as web-based services, e.g., mail, shopping, and business-to-
business transactions, all want to keep a good deal of information secret. For
example, companies should protect salary information of their employees, or
business plans, or any other information that gives them a competitive edge.
Web-based services need to protect their customers’ personal information when
they perform on-line functions such as banking, shopping, or social networking.
When more and more sensitive information is stored, processed electronically,
and transmitted across networks, the risks of unauthorized access increases.
If important information falls into the wrong hands, it can wreck lives, bring
down businesses, and even commit harm. Thus, we are presented with growing
challenges related to how to protect valuable private information in the best way.
This thesis aims to deal with these challenges, i.e., to keep secret information
manipulated by computing systems secure. In this thesis, unless otherwise stated,
the term security refers to confidentiality.

Securing the data manipulated by computing systems has been a challenge in
the past years. Several methods to limit the information disclosure exist today,
such as access control, and cryptography. For example, companies include some
form of access control to protect their files from being read or modified by
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2 Chapter 1. Introduction

unauthorized users. Web-based services protect their customers’ information
by limiting the places where information might appear (in databases, log files,
backups, printed receipts etc.), and also by restricting access to the places where
it is stored. A credit card transaction on the Internet requires the credit card
number to be encrypted during transmission.

These are important and useful approaches, of course, but they have a fun-
damental limitation, i.e., they can prevent confidential information from being
read or modified by unauthorized users, but they do not regulate the informa-
tion propagation after it has been released. For example, access control prevents
unauthorized file access, but is insufficient to control how the data is used af-
terwards. Similarly, cryptography provides the means to exchange information
privately across a non-secure channel, but no guarantee about the confidential-
ity of private data is given after it is decrypted. Thus, neither access control nor
encryption provide a complete solution to protect confidentiality of information
systems.

To ensure confidentiality for an information system, it is necessary to show
that the system as a whole enforces a confidentiality policy, i.e., by analyzing
how information flows within the system. The analysis must show that infor-
mation controlled by a confidentiality policy cannot flow to a location where
that policy is violated. Thus, the confidentiality policy we wish to enforce is an
information flow policy, and the method that enforces them is an information
flow analysis. An information flow policy is a standard way to apply the princi-
ple of end-to-end design to the specification of computer security requirements.
Therefore, we expect the guaranteed security specification to be an end-to-end
security policy, i.e., not only preventing unauthorized access to information, but
also tracking how information flows during program executions [78].

Basically, information flow analysis is to track and regulate the information
flow of a system during its execution to prevent the flow of private information
to unauthorized users/attackers. If the program passes the analysis, then the
system’s execution does not contain insecure information flow. The analysis
can be done either dynamically, e.g., by runtime monitoring or test execution,
or statically, e.g., by data-flow analysis or model checking. Dynamic analysis
marks data with labels describing their security levels, and then propagates
those labels to all derivatives of the data to check whether a violation occurs,
while static analysis analyzes the source code of the program that processes the
data to determine whether it respects the information flow policy.

However, dynamic analysis cannot be precise, since confidentiality is a prop-
erty concerning all possible execution paths, while dynamic analysis only has
information about the single current execution [78, 77]. The static approach is
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a more promising way of enforcing information flow policies, since it considers
all possible data traces; and thus, it can control information flow with high pre-
cision [78]. This thesis follows the static approach, which can be classified into
qualitative and quantitative information flow analysis. Qualitative information
flow analysis checks whether an application leaks secret information, and quan-
titative analysis determines how much secret information has been leaked in
case the application is rejected by qualitative analysis.

Many systems for which confidentiality is important are implemented in a
multi-threaded fashion where multiple activities can be executed concurrently,
e.g., web-based services, databases and operating systems. With the increasing
popularity of multiple cores on a chip and massively parallel systems like general-
purpose graphic processing units, multi-threading is becoming the standard.
However, to guarantee confidentiality for multi-threaded programs is a challenge,
since data of a multi-threaded program often behave unpredictably during the
execution, and thus, it is difficult to predict what an attacker can observe.
While many researchers are concerned with this challenge with various different
approaches having been proposed, efficient information flow analysis techniques
for multi-threaded programs are still lacking.

This thesis focuses on static information flow analysis for multi-threaded
programs, i.e., to determine whether, and how much, private information
has been leaked via public data.

1.2 Qualitative information flow analysis

Information flow is the flow of information from one variable to another variable
in a program. In information flow analysis, each variable is assigned a security
level. The basic model comprises two distinct levels: low and high, meaning, re-
spectively, publicly observable information, and private information. Qualitative
information flow analysis prohibits any information flow from a high security
level to a low security level1. For example, the following program,

if (S > 0) then O := 0 else O := 1,

where S is a private variable and O is a public variable, is rejected by qualitative
security properties, since we can learn information about S from the value of O .

1This model can be generalized in an obvious way, i.e., security levels can be viewed as a
lattice with information flowing only upwards in the lattice.
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Many applications such as Internet banking, e-commerce, and medical infor-
mation systems etc. need to enforce strict protection of private data, e.g., credit
card details, medical records etc. The success of these applications depends for
a large part on the confidentiality guarantees that can be given to clients. If
private data is not absolutely protected, users refuse to use such applications.
Thus, it is necessary that these applications satisfy qualitative confidentiality
properties, i.e., private information cannot be derivable from public data. Using
formal means to establish confidentiality is a promising way to gain users’ trust.
Of course, there are many challenges related to this.

1.2.1 Confidentiality for multi-threaded programs

Different notions of qualitative confidentiality properties are proposed in the
literature. Many researchers are concerned with defining and refining variations
of noninterference — a fundamental qualitative confidentiality property that is
often used for sequential programs [38, 92]. Noninterference states that a pro-
gram is considered secure if the set of possible final values of public variables
are independent of the initial values of private variables [92, 83]2. An open
challenge is to establish a suitable formalization of confidentiality for multi-
threaded programs, since noninterference is not appropriate for a multi-threaded
setting. This is due to two reasons. First of all, due to the exchange of in-
termediate results during the execution of a multi-threaded program, we have
to take into account the leakage in intermediate states. Consider the following
multi-threaded program, where S ∈ H (set of high variables) and O ∈ L (set of
low variables).

Example 1.1

O := 0;(
{if (O = 1) then (O := S ) else skip}

∣∣∣∣O := 1;
)

O := 1;

From now on, for notational convenience, let C1 and C2 denote the left and
right operands of the parallel composition operator

∣∣∣∣. Executing this program,
we obtain the following traces T |O of O , depending on which thread is picked
first.

2There exist many definitions of noninterference. We refer to the definition of Volpano and
Smith [92].



1.2. Qualitative information flow analysis 5

T |O =

{
[0, 1, 1] execute C1 first
[0, 1,S , 1] execute C2 first

According to the definition of noninterference, this program is secure, since
the final value of O is independent of the initial value of S . However, this pro-
gram leaks the entire secret, since the attacker can access S via an intermediate
state on the public data trace when C2 is executed first.

Thus, the definition of noninterference which considers only leaks in final
states is not appropriate to ensure confidentiality for multi-threaded programs.
Instead, for multi-threaded programs, we have to require that private data are
never revealed throughout the whole execution traces, i.e., the sequences of states
that occur during the program execution [96, 80].

Secondly, because of the interactions between threads, data traces of a multi-
threaded program depend on the scheduling policy that is used to deploy the
program. Thus, for multi-threaded programs, we have to consider the refinement
attack where an attacker chooses an appropriate scheduler to refine the set of
possible program traces; and thus, secret information can be revealed from this
limited set of traces.

Thus, new methods have to be developed for an observational model where
an attacker is able to access the program source code, observe traces of public
data, and limit the set of possible program traces by selecting an appropriate
scheduler. This thesis proposes two confidentiality properties for multi-threaded
programs, one for non-deterministic programs, where we do not take into ac-
count the probabilistic behavior of programs and schedulers, and one for proba-
bilistic programs, where we assume to have knowledge about the probability of
scheduling events.

Non-deterministic multi-threaded programs. Different proposals ex-
ist that attempt to establish a confidentiality property for the multi-threaded
setting. We follow the approach advocated by Roscoe [75] that for a multi-
threaded program, not to leak information about private data, behavior that
can be observed by an attacker should be deterministic, and thus, it cannot be
influenced by private data. The only way information can flow from private data
to public data is when public data behave differently with different private data.
To capture this, the notion of observational determinism has been introduced.
Intuitively, observational determinism expresses that a multi-threaded program
is secure when its publicly observable traces are deterministic and independent
of its private data. Several formal definitions are proposed in the literature,
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e.g., by [96, 48, 87], but none of them captures this intuition exactly, i.e., they
accept insecure programs, since their formalizations of deterministic behavior
are not precise. Besides, these definitions also claim that they are scheduler-
independent, i.e, they are resistant to refinement attacks. However, this claim
is not correct, i.e., with an appropriate scheduler, the attacker can derive secret
information from an accepted program.

Taking into account the effect of schedulers on confidentiality, this thesis
proposes a definition of scheduler-specific observational determinism (SSOD).
Basically, a program respects SSOD if (SSOD-1) each public variable has to
evolve deterministically on traces, i.e., traces of each public variable are stutter-
ing equivalent, and (SSOD-2) the relative orderings of public-variable updates
on traces are coincidental. SSOD is scheduler-specific, since traces model the
runs of a program under a particular scheduler. When the scheduling policy
changes, some traces cannot occur, and also, some new traces might appear ;
thus the new set of traces may not respect our conditions. Notice that this def-
inition does not consider the probabilistic behavior of programs and scheduling
policies.

Probabilistic multi-threaded programs. SSOD is a non-deterministic
secure information flow property: it only considers the nondeterminism that is
possible in an execution, but it does not consider the probability that an exe-
cution will happen. When a scheduler’s behavior is probabilistic, some threads
might be executed more often than others, which opens up the possibility of
probabilistic attacks. To prevent information leakage under probabilistic at-
tacks, several notions of probabilistic noninterference have been proposed by
Volpano et al., Sabelfeld and Sands, and Smith [93, 80, 82]. However, these def-
initions have limitations, i.e., they accept leaky programs, while rejecting many
secure ones. Therefore, this thesis also introduces the notion of scheduler-specific
probabilistic observational determinism (SSPOD). This definition extends SSOD,
and makes it usable in a larger context.

SSPOD formalizes a confidentiality property for multi-threaded programs
executed under probabilistic schedulers. Basically, a probabilistic program re-
spects SSPOD if (SSPOD-1) each public variable individually behaves deter-
ministically with probability 1, and (SSPOD-2) the relative ordering of public-
variable updates on traces are probabilistically coincidental.

Scheduler-independent confidentiality. Besides, we consider it very im-
portant that security of a given program is robust w.r.t. any particular scheduler
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used; otherwise security guarantees may be destroyed by a slight change in the
scheduling policy. Therefore, this thesis also derives a definition of scheduler-
independent observational determinism. Intuitively, considering all possible in-
terleavings of the threads of a multi-threaded program, if all traces of all public
variables behaves deterministically, the program is secure w.r.t. any scheduling
policy used to deploy the program.

1.2.2 Property verification and attack synthesis

Besides formalizing confidentiality properties, this thesis also discusses how to
verify them. While various, subtly different approaches to formalize multi-
threaded confidentiality have been proposed, efficient verification techniques for
these properties are still lacking. Classical approaches to check information flow
properties are typically based on type systems: if a program can be typed, it
ensures secure information flow. Type systems are efficient, and support com-
positional verification. However, they also have several drawbacks. First of
all, they are often imprecise, and insensitive to control flow. Secondly, type
systems for multi-threaded programs often aim to prevent information leakage
from the thread timing behavior of executions; and thus, to achieve this goal,
type systems are often very restrictive. This restrictiveness makes practical pro-
gramming impossible. Finally, the extensibility of type systems is very poor:
each variant of the information flow policy or each new feature added to the pro-
gramming language requires a modification of the type system and its soundness
proof [15].

Logic-based verification. Instead, logic-based verification approaches are
more flexible, and also offer a more general mechanism to enforce a variety
of information flow policies, without the need to prove soundness repeatedly.
This thesis discusses a method to encode the information flow property as a
temporal logic property. To do this, we implement the idea of self-composition
— a construction where a program is composed with its copy and each program
copy keeps an independent memory [34, 15]. Basically, we construct a program
model that executes the program to be verified twice, in parallel with itself.
This program model enables us to characterize the confidentiality property as
a logical property; and thus, the information flow verification problem can be
translated into a model-checking problem. This approach offers us a way to reuse
existing model checkers to verify information flow properties for programs.
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Algorithmic verification. Besides reusing existing verification tools, we
also propose more efficient specialized algorithms to verify our information flow
properties. These algorithms not only give a precise and efficient verification
method for confidentiality, but also are relevant outside the security context.
We would like to stress that other formalizations of observational determin-
ism [96, 48, 87] can also be verified by minor modifications of our algorithms.
In comparison to the logical verification approach, the program model in the
algorithmic approach is simpler, which makes the verification of large systems
more practical.

Attack synthesis. Another advantage of using model-checking techniques
to verify information flow properties is that we can synthesize attacks for in-
secure programs, based on counter-example generation techniques. Since the
verification algorithm is precise, if it fails, a counter-example can be produced,
describing a possible attack on the security of the program. This thesis describes
how the verification algorithms can be instrumented to produce these counter-
examples. We believe that our idea of applying counter-example generation to
synthesize attacks for information flow properties has not previously been men-
tioned in the qualitative confidentiality theory for multi-threaded programs.

We also develop a tool which contains these algorithmic techniques, and
provide case studies to show the feasibility of the algorithmic approaches and
the practical capability of the tool.

This thesis introduces scheduler-specific observational determinism
properties for multi-threaded programs. Additionally, it proposes precise
and efficient verification techniques to check whether a program satisfies
these security requirements. For rejected programs, this thesis proposes
attack-synthesis techniques that describe a possible attack on a security
hole of programs.

1.3 Quantitative information flow analysis

As discussed above, qualitative information flow analysis absolutely forbids any
flow of information. Thus, qualitative analysis does not distinguish between two
programs (C1) O := S and (C2) O := S mod 2, where S is a private variable
and O is a public output. Both C1 and C2 are rejected, since they reveal
secret information. The qualitative confidentiality properties only tell whether
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a program is completely secure or not completely secure, i.e., they only make
binary decisions.

Qualitative security analysis is essential for applications where private data
need strict protection. However, many practical programs require the ability to
intentionally violate qualitative information flow properties by leaking minor
information. Such systems include password checkers (PWC), cryptographic
operations etc. For instance, when an attacker tries a string to guess the pass-
word: even when the attacker makes a wrong guess, secret information has been
leaked, i.e., it reveals information about what the real password is not. Sim-
ilarly, encrypting some private data would seem to make them public. Thus,
there is a flow of information from the plain-text to the cipher-text, since the
cipher-text depends on the plain-text. These applications are not accepted by
qualitative security properties.

Standard qualitative security policies are incapable of expressing the desired
security properties for these systems. These violations necessitate a richer se-
curity policy than the traditional qualitative properties. An approach that has
recently become an active research topic in the computer security community is
quantitative information flow analysis [64, 28, 22, 62, 61, 99, 84, 9]. Basically,
this approach relaxes the absolute confidentiality properties by quantifying the
information flow and determining how much secret information has been leaked,
i.e., expressing the amount of leakage in quantitative terms. A quantitative
theory of information flow offers a method to compute bounds on how much
information is leaked. This information can be used to decide whether we can
tolerate minor leakage. Quantifying information flow also provides a way to
judge whether one application leaks more information than another, although
both are insecure. For example, a reasonable quantitative security analysis
would assign a higher value of leakage to C1 than to C2, since an attacker is
able to learn the entire content of S in C1, while C2 only allows him to learn one
bit of S . Thus, a quantitative security policy can be seen as a generalization
of an absolute one, since it can provide properties that go beyond the binary
output of a qualitative approach.

1.3.1 Classical quantitative security analysis

Classical quantitative analysis models the program execution as a channel in
the information-theoretic sense, where the secret S is the only input and the
observable O is the output [4]. An attacker, by observing O , might be able to
derive information about S . The quantitative security analysis then concerns
the amount of private data that an attacker is able to learn. The analysis is based
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on the notion of entropy. The entropy of a random private variable expresses
the uncertainty of an attacker about its value, i.e., how difficult it is for an
attacker to discover its value. The leakage of a program is typically defined as
the difference between the secret’s initial uncertainty, i.e., the uncertainty of the
attacker about the private data before the program execution, and the secret’s
remaining uncertainty, i.e., the uncertainty of the attacker after observing the
program’s public outcomes, i.e.,

Information leakage = Initial uncertainty - Remaining uncertainty.

1.3.2 Quantitative security analysis for programs with low
input and noisy output

This thesis discusses how to quantitatively analyze information flow of an ap-
plication where an attacker is able to influence the initial values of its public
variables. For example, in PWC, the string an attacker tries to guess the pass-
word is the low input. Many real-world applications, e.g., login systems, PWC,
or banking systems fall in this category. Making a suitable quantitative analysis
of information flow for programs containing low input is more difficult than it
might seem [30, 49]. The key point is how to model such programs, since a
wrong model results in counter-intuitive quantities of information flow.

The common sense of the information-theoretic channel is that the secret is
the only input. However, for programs where an attacker can set up the initial
low values based on his knowledge about the program code and private data,
the initial low values are also input of the channel. Thus, the channel that
models the program now has two different kinds of inputs, i.e., the secret and
the initial low values. This makes the traditional form of channel invalid when
quantifying information flow of such programs.

To apply the traditional channel to this situation, we consider the initial low
values as parameters of the channel. In particular, we consider all possible sets
of initial low values, and for each set, we construct a channel corresponding to
these low values. Each channel is seen as a test, i.e., the attacker sets up the
low parameters to test the system. Since the attacker knows the program code,
he knows which test would help him to gain the most information. Therefore,
the leakage of the program with low input is defined as the maximum leakage
over all possible tests.

To make our model of quantitative security analysis suitable for both se-
quential and multi-threaded programs, firstly, we consider also the leakage in
intermediate states, instead of just the leakage in the final states. Basically, the
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output of our channel is a set of public-data traces obtained from the program
execution. Secondly, we assume that the attacker cannot choose schedulers.
In the next section, we discuss a different model of analysis aiming for multi-
threaded programs where the attacker is able to select an appropriate scheduler
to control the set of program traces. The model for multi-threaded programs
does not follow the traditional information-theoretic channel setting.

A new measure for the remaining uncertainty. The existing approaches
of quantitative information theory do not agree on a unique measure to quantify
information flow. Past works have proposed several entropy measures to com-
pute program’s leakage. Several researchers base their analysis on Shannon en-
tropy and Rényi’s min-entropy with Smith’s version of conditional min-entropy
[64, 28, 22, 62, 61, 99, 84, 9]. Basically, the Shannon entropy of a random
variable X is a lower bound of the expected number of guesses that are needed
to determine correctly the value of X, while the min-entropy represents the
measure of success to guess the value of X by just one single try.

However, for some scenarios, these measures are in conflict, i.e., Shannon-
entropy measures judge some programs more dangerous than others, while min-
entropy measures give the opposite results. Thus, the literature admits that
there is no unique measure that is likely to suit all cases: some measures will
be more appropriate for the analysis in certain threat models [7].

This thesis follows the one-try guessing model, i.e., after observing the public
outcome, the attacker is allowed to guess the value of S by only one try. This
threat model is suitable to many security situations, i.e., the system will trigger
an alarm when an attacker makes a wrong guess. For this threat model, the most
established approach to quantify and reason about information flow is based on
Rényi’s min-entropy with Smith’s definition of conditional min-entropy [84].
However, we show that in some cases, Cachin’s version of conditional min-
entropy [21] might be a more reasonable measure for the notion of remaining
uncertainty, i.e., it gives results that better match the intuition than Smith’s
version. Therefore, this thesis proposes to consider Cachin’s version as a new
measure for quantifying information flow. We believe that this measure has not
previously been used in the theory of quantitative information flow.

Noisy-output policy. The literature argues that by observing public out-
comes of the execution, the attacker gains more knowledge about private data.
Thus, the observable outcomes would reduce the initial uncertainty of the at-
tacker on the secret; and hence, the value of leakage cannot be negative. How-
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ever, we show that this non-negativeness property of leakage does not always
hold, for example, in case the output of the program contains noise. The idea
is that to enhance the security, the system operator might secretly add noise to
the output, i.e., instead of always producing the exact outcomes, the program
might sometimes report noisy ones. The noisy-output policy makes the out-
comes of program more random, and thus, it reduces the correlation between
the output and the input. As a consequence, the noisy outcomes might mislead
the attacker’s belief about the secret, and thus, increase the final uncertainty.
Therefore, the value of leakage might be negative. We believe that this property
might open the door for a new understanding of what the measure of uncertainty
should be.

Adding noise to the output enhances the security, but it reduces the pro-
gram’s reliability, i.e., the probability that the program produces the correct
outcomes. Totally random output might achieve the best confidentiality, but
these outcomes are practically useless. Thus, it is clear that a noisy-output
policy should consider the balance between confidentiality and reliability.

This thesis discusses how to construct an efficient noisy-output policy such
that the attacker cannot derive secret information from the public outcomes,
while a certain level of reliability is still preserved. Since the policy is kept
secret, i.e., we do not want the attacker to find out that the system has been
modified, the policy needs to respect some properties of the system. In this
way, the noisy-output policy would help to protect the system effectively, while
it still preserves the program’s function at the same time. To the best of our
knowledge, the analysis for systems containing noisy output, and the idea of
noisy-output policy have not been discussed in the literature before.

1.3.3 Quantitative security analysis for multi-threaded pro-
grams with the effect of schedulers

Since the outcomes of multi-threaded programs depend on the scheduling policy,
to obtain a model of the complete analysis for multi-threaded programs, it is
necessary to study what extra information an attacker can get if he knows
the scheduler’s choices. Therefore, this thesis also discusses a novel model of
analysis for multi-threaded programs where the attacker is able to select an
appropriate scheduler to control the set of program traces. In this analysis,
we model the execution of a multi-threaded program under the control of a
probabilistic scheduler by a probabilistic Kripke structure3. The probabilities

3Probabilistic Kripke structure can be seen as a discrete-time Markov chain.
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of the transitions are given by the scheduler that is used to deploy the program.
States denote the probability distributions of private data S .

Therefore, the program execution can be seen as a distribution transformer.
During the execution, the distribution of private data transforms from the initial
distribution to the final distributions over traces. The distributions of private
data at the initial and the final state of a trace can be used to define the
initial uncertainty of the attacker about the secret information, and his final
uncertainty, after observing the public data trace, respectively. Consequently,
we define the leakage of an execution trace, i.e., the leakage given by a sequence
of publicly observable data obtained during the execution of the program, as
the difference between the initial uncertainty and the final uncertainty.

We denote the initial and the final uncertainty of an attacker by Rényi’s
min-entropies of the initial and final distributions of private data, respectively.
Notice that in this model of analysis, the notion of final uncertainty is slightly
different from the notion of of remaining uncertainty in the channel-based ap-
proach. While the remaining uncertainty depends only on the public outcomes
of the execution, our notion of final uncertainty depends on the observables
along the trace, and also on the program commands (chosen by the scheduler)
that result in such observables. Both notions of initial and final uncertainty are
computed by the same notion of entropy, i.e., Rényi’s min-entropy, while the
notion of remaining uncertainty is computed by the conditional min-entropy.

Since the execution of a multi-threaded program always results in a set of
traces, the leakage of a program is then defined as the expected value of the
leakage-trace values. Via a case study, we demonstrate how the leakage of a
multi-threaded programs is measured. We also compare our approach with
the existing channel-based analysis models. We show that our approach gives
a more accurate way to study quantitatively the security property of multi-
threaded programs.

This thesis discusses how to estimate the quantity of information leakage
for programs that contain low input and noisy output. It also introduces
a new measure for the notion of remaining uncertainty. The analysis for
multi-threaded programs that takes into account the effect of schedulers is
also investigated.
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1.4 Main contributions

In summary, the main contributions of this thesis to the field of information
flow analysis are as follows,

• Qualitative information flow analysis:

– We introduce the notions of scheduler-specific observational deter-
minism that are formalizations of the secure information-flow require-
ments for multi-threaded programs. We show that our formalizations
approximate the intuitive notion of security more precisely than the
earlier definitions of observational determinism, which either accept
insecure programs, or are overly restrictive. Besides, our definitions
are also the only ones to consider the effect of schedulers on confi-
dentiality.

– We propose precise methods — logic-based and algorithmic verifica-
tion techniques — to verify secure information flow properties. The
verification uses a combination of new and existing algorithms. Since
these properties are fundamental concepts in the theory of concur-
rent and distributed systems, the algorithms are also applicable in a
broader situation, outside the security context.

– The advantage of using model-checking algorithms is that they can
generate counter-examples when the verification fails. We extend
our algorithms for this purpose, i.e., presenting counter-examples to
synthesize information leaking attacks.

– We are implementing a tool, named LTSmin-check, that contains
the proposed algorithmic techniques. The feasibility of the algorith-
mic method and the capability of the tool are shown via practical
case studies.

• Quantitative information flow analysis:

– We discuss how to analyze quantitatively the information flow of a
popular kind of programs— the ones that contain low input. For such
programs, we adapt the traditional information-theoretic channel by
considering the initial low values as parameters of the channel.

– We show that the value of information flow might be negative in
case the system operator adds noise to the outcomes, i.e., the noise
misleads the attacker’s belief about the secret, and thus, it increases
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the final uncertainty. We believe that this property would change the
way people often think about the measure of uncertainty.

– We propose a new measure for the notion of remaining uncertainty,
based on Cachin’s definition of conditional min-entropy. This new
measure matches the real leakage values in many cases. This thesis
also discusses how to design an efficient noisy-output policy, which
generates noisy outcomes, while still guaranteeing a high overall re-
liability.

– We propose a novel approach for estimating the leakage of multi-
threaded programs. This approach takes into account the observable
data in intermediate states, and also the effect of the scheduler. We
believe that this method gives us a more accurate way to study the
quantitative security of multi-threaded programs. Thus, we consider
this work as an important contribution in the field of quantitative
security analysis for multi-threaded programs.

1.5 Organization of the thesis

This thesis consists of 10 chapters, which are basically grouped into three main
parts. This introduction aside, the following is a brief summary of the contents
of each chapter.

Chapter 2 provides the necessarily mathematical backgrounds for this the-
sis, including the definitions of Kripke structure, scheduler and stuttering
equivalence.

Part 1: Qualitative Information Flow Properties

Chapter 3 discusses the limitations of existing confidentiality formalizations,
and then presents two formalizations that overcomes these shortcomings:
scheduler-specific observational determinism (SSOD) for non-deterministic
programs and scheduler-specific probabilistic observational determinism
(SSPOD) for probabilistic programs. Finally, a scheduler-independent con-
fidentiality property is also derived.

Part 2: Qualitative Verification and Attack Synthesis

Chapter 4 shows how an information flow property can be verified by a logic-
based verification method. Concretely, this chapter shows that SSOD can
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be characterized by a temporal logic formula, and thus, existing standard
verification tools can be used to prove or disprove this property.

Chapter 5 presents an algorithmic verification approach for both SSOD and
SSPOD properties.

Chapter 6 introduces an attack synthesis method for insecure programs, based
on counter-example generation techniques.

Chapter 7 discusses the practical implementation of the proposed algorithms,
and case studies.

Part 3: Quantitative Information Flow Analysis

Chapter 8 discusses how to quantify information flow of programs that contain
public input and noise at the output.

Chapter 9 presents a quantitative security analysis model for multi-threaded
programs.

Chapter 10 concludes this thesis by summarizing its contributions, and also
sketches directions for future work.
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Preliminaries

This chapter provides concepts and notations that are used throughout the re-
mainder of this thesis. We first give definitions of (probabilistic) Kripke struc-
tures that are used to model semantics of (probabilistic) programs. The notion
of schedulers that are used to deploy programs is also introduced. Finally, we
define the notion of stuttering equivalence that is used to formally define the
deterministic behavior of traces.

2.1 Basics

Sequences. Let X be an arbitrary set. The sets of all finite sequences, and
all finite/infinite sequences of elements from X are denoted by X∗, and Xω,
respectively. The empty sequence is denoted by ε. Given a sequence σ ∈ X∗,
we denote its last element by last(σ). A sequence ρ ∈ X∗ is called a prefix of
σ ∈ Xω, denoted ρ � σ, if there exists another sequence ρ′ ∈ Xω such that
ρρ′ = σ.

Probability distributions. A probability distribution μ over a set X is a
function μ ∈ X → [0, 1], such that the sum of the probabilities of all elements
is 1, i.e.,

∑
x∈X μ(x) = 1. If X is uncountable, then

∑
x∈X μ(x) = 1 implies

that μ(x) > 0 only for countably many x ∈ X. We denote by D(X) the set of
all probability distributions over X.

The support of a distribution μ ∈ D(X) is the set supp(μ) = {x ∈ X | μ(x) >
0} of all elements with a positive probability. For an element x ∈ X, we denote

17
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by 1x the probability distribution that assigns probability 1 to x and 0 to all
other elements. The distribution is uniform when it assigns equal probability
to all elements.

2.2 Kripke structures

Kripke structures [57] are a standard way to model programs’ semantics [41].
Basically, Kripke structures are graphs where nodes represent states of the sys-
tem and edges represent transitions between states. Each state may enable
several transitions, modeling different execution orders to be determined by
a scheduler. State labels equip each state with relevant information about
that state. For technical convenience, our Kripke structures label states with
arbitrary-valued variables from a set Var , rather than with only Boolean-valued
atomic propositions. Thus, each state c is labeled by a function (valuation)
V (c) : Var → Val that assigns a value V (c)(v) ∈ Val to each variable v ∈ Var .
We assume that Var is partitioned into sets of low (public) variables L and high
(private) variables H , i.e., Var = L ∪H , with L ∩ H = ∅.

Definition 2.1 (Kripke structure) A Kripke structure (KS) A is a tuple
〈S, I,Var ,Val , V,→〉 consisting of (i) a set S of states, (ii) an initial state
I ∈ S, (iii) a finite set of variables Var, (iv) a countable set of values Val, (v) a
labeling function V : S → (Var → Val), (vi) a transition relation →⊆ S × S.
We assume that → is non-blocking, i.e., ∀c ∈ S. ∃c′ ∈ S. c→ c′.

Given a set Var ′ ⊆ Var , the projection A |Var′ of A on Var ′, restricts the labeling
function V to labels in Var ′. Thus, we obtain A |Var′ from A by replacing V
with V |Var′ : S → (Var ′ → Val).

Semantics of programs. A program C over a variable set Var can be
expressed as a KS AC in a standard way: The states of AC are tuples 〈C, s〉
consisting of a program fragment C and a valuation s : Var → Val . The transi-
tion relation → follows the small-step semantics of C. If a program terminates
in a state c, we include a special transition c→ c, i.e., a self-loop, ensuring that
AC is non-blocking. In the remainder of this thesis, we leave out the superscript
C whenever this is clear from the context.

Paths and traces. A path π in an arbitrary KS A is an infinite sequence
π = c0c1c2 . . . such that (i) ci ∈ S, c0 = I, and (ii) for all i ∈ N, ci → ci+1. We
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define Path(A) as the set of all infinite paths of A; and Path∗(A) = {π′ � π |
π ∈ Path(A)} as the set of all finite paths in Path(A).

The trace T of a path π records the valuations along π. Formally, T =
trace(π) = V (c0)V (c1)V (c2) . . .. Trace T is a lasso iff it ends in a loop, i.e., if
T = T0 . . . Ti(Ti+1 . . . Tn)

ω, where (Ti+1 . . . Tn)
ω denotes a loop. We write c ⇓ T

iff c is the start state of T .

Let Trace(A) denote the set of all infinite traces of A. We use T�i to denote
the suffix of T starting with Ti, i.e., T�i = Ti, Ti+1, Ti+2, . . ., and T�i to denote
the prefix of T up to the index i, i.e., T�i = T0, T1, . . . , Ti.

Two states c and c′ are low-equivalent, denoted c ∼L c
′, iff V (c) |L = V (c′) |L .

Over a trace T , we let T |l and T |L denote the projections of T on a low variable
l and the set of low variables L, respectively.

2.3 Probabilistic Kripke structures

Probabilistic Kripke structures (PKS) can be used to model semantics of prob-
abilistic multi-threaded programs. PKSs are like standard Kripke structures,
except that each transition c→ μ leads to a probability distribution μ over the
next states, i.e., the probability to end up in state c′ is μ(c′). Each state may
enable several probabilistic transitions, modeling different execution orders to
be determined by a scheduler. Our PKSs also label states with arbitrary-valued
variables from a set Var .

Definition 2.2 (Probabilistic Kripke structure) A PKS A is a tuple 〈S, I,
Var ,Val , V,→〉 consisting of (i) a set S of states, (ii) an initial state I ∈ S,
(iii) a finite set of variables Var, (iv) a countable set of values Val, (v) a label-
ing function V : S → (Var → Val), (vi) a transition relation →⊆ S × D(S).
We assume that → is non-blocking, i.e., ∀c ∈ S. ∃μ ∈ D(S). c→ μ.

A PKS is fully probabilistic if each state has at most one outgoing transition,
i.e., if c→ μ and c→ μ′, then μ = μ′.

Semantics of probabilistic programs. A probabilistic program C over a
variable set Var can be expressed as a PKS A in a standard way. Probabilities
of transitions are assigned by the scheduler that is used to deploy the program.
If a program terminates in a state c, we include a special transition c → 1c,
ensuring that A is non-blocking.
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Notice that we use the same notation A for KSs and PKSs. However, it is
clear from the context that if C is non-deterministic, C is modeled as a KS A;
otherwise, A is a PKS.

Paths and traces. A path π in a PKS A is an infinite sequence π = c0c1c2 . . .
such that (i) ci ∈ S, c0 = I, and (ii) for all i ∈ N, there exists a transition ci → μ
with μ(ci+1) > 0. The definition of traces in PKSs is the same as for KSs.

2.4 Schedulers

A multi-threaded program executes threads from the set of non-terminated
threads, i.e., the live threads. During the execution, a non-deterministic schedul-
ing policy repeatedly decides which thread is picked to proceed next, while a
probabilistic scheduling policy decides with which probability the thread is se-
lected. A scheduler is a function that implements a scheduling policy [80]. To
make our security property applicable for many schedulers, we give a general
definition. We allow a scheduler to use the full history of computation to make
decisions.

Non-deterministic schedulers. Given a path ending in some state c, a
non-deterministic scheduler δ, which determines a set of the possible successor
states Q, is formally defined as follows,

Definition 2.3 (Non-deterministic scheduler) A non-deterministic sched-
uler δ for a KS A = 〈S, I,Var ,Val , V,→〉 is a function δ : Path∗(A) → 2S ,
such that, for all finite paths π ∈ Path∗(A), if δ(π) = Q ⊆ S then last(π) can
make a transition to each c ∈ Q.

Probabilistic schedulers. Given a path ending in some state c, a prob-
abilistic scheduler chooses probabilistically which of the transitions enabled in
c to execute. Since each transition results in a distribution, a probabilistic
scheduler returns a distribution of distributions1.

Definition 2.4 (Probabilistic scheduler) A probabilistic scheduler δ for a
PKS A = 〈S, I,Var ,Val , V,→〉 is a function δ : Path∗(A) → D(D(S)), such
that, for all finite paths π ∈ Path∗(A), δ(π)(μ) > 0 implies last(π) → μ.

1Thus, we assume a discrete probability distribution over the uncountable set D(S); only
the countably many transitions occurring in A can be scheduled with a positive probability.
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The effect of a scheduler δ on A can be described by Aδ: the set of states
of Aδ is obtained by unrolling the paths in A, i.e., SAδ

= Path∗(A), such that
states of Aδ contain a full history of execution. Besides, the unreachable states
of A under the scheduler δ are removed by the transition relation →δ. These
terms are formally defined as follows.

Definition 2.5 Given A = 〈S, I,Var ,Val , V,→〉, and let δ be a scheduler for
A.

For the non-deterministic scenario, the Kripke structure associated to δ is
Aδ = 〈Path∗(A), I,Var ,Val , Vδ,→δ〉, where Vδ : Path∗(A) × Var → Val is
given by Vδ(π) = V (last(π)), and the transition relation is given by π →δ πc
iff c ∈ δ(π), i.e., Aδ can transition from a path π to a path πc if δ enables
scheduling state c after π.

For the probabilistic scenario, the probabilistic Kripke structure associated
to δ is Aδ = 〈Path∗(A), I,Var ,Val , Vδ,→δ〉, where Vδ : Path∗(A)×Var → Val
is given by Vδ(π) = V (last(π)), and the transition relation is given by π →δ μ
iff μ(πc) =

∑
ν∈supp(δ(π)) δ(π)(ν) · ν(c) for all π, c.

In the probabilistic scenario, since all nondeterministic choices in A have
been resolved by δ, Aδ is fully probabilistic, and can be considered as a Markov
chain. The probability P (π) given to a finite path π = π0π1 . . . πn is determined
by δ(π0)(π1) · δ(π0π1)(π2) · · · δ(π0π1 . . . πn−1)(πn). The probability of a finite
trace T is obtained by adding the probabilities of all paths associated with T .

2.5 Stuttering-free Kripke structures and
stuttering equivalence

Stuttering steps and stuttering equivalence [73] are the basic ingredients of our
confidentiality properties.

Definition 2.6 (Stuttering-free KS) A stuttering step is a transition c→ c′

that leaves the labels unchanged, i.e., V (c′) = V (c). A KS is called stuttering
free, if c→ c′ and V (c) = V (c′) imply c = c′ and c is a final state, i.e., stuttering
steps are only allowed as self-loops in final states.

In probabilistic scenarios, a transition stutters if, with positive probability,
at least one of the reached states has the same label. Similar to a stuttering-free
KS, a stuttering-free PKS allows only stuttering transitions as self-loops in final
states.
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Definition 2.7 (Stuttering-free PKS) A stuttering step is a transition c→
μ with V (c) = V (c′) for some c′ ∈ supp(μ). A PKS is called stuttering-free if
for all stuttering steps c → μ, we have that μ = 1c, and no other transition is
enabled, i.e., if c→ μ′, this implies μ = μ′.

The key ingredient in the various definitions of observational determinism is
trace equivalence up to stuttering, or up to stuttering and prefixing. The formal
definition of stuttering equivalence given below is based on [73, 48]. It uses the
auxiliary notion of stuttering equivalence up to indexes i and j.

Definition 2.8 (Stuttering equivalence) Traces T and T ′ are stuttering
equivalent up to i and j, written T ∼i,j T

′, iff we can partition T�i and T
′�j

into n blocks such that elements in the pth block of T�i are equal to each other
and also equal to elements in the pth block of T ′�j (for all p ≤ n). Correspond-
ing blocks may have different lengths.

Formally, T ∼i,j T
′ iff there are sequences 0 = k0 < k1 < k2 < . . . < kn =

i + 1 and 0 = g0 < g1 < g2 < . . . < gn = j + 1 such that for each 0 ≤ p < n,
and for any kp ≤ v < kp+1 and gp ≤ w < gp+1, Tv = T ′

w holds.
T and T ′ are stuttering equivalent, denoted T ∼ T ′, iff ∀i. ∃j. T ∼i,j T

′ ∧
∀j. ∃i. T ∼i,j T

′.

Basically, two sequences are stuttering equivalent if they are the same af-
ter we remove adjacent occurrences of the same label, e.g., (aaabcccd)ω and
(abbcddd)ω. Stuttering-equivalence defines an equivalence relation, i.e., it is
reflexive, symmetric and transitive [73, 48].

A set X is closed under stuttering equivalence if T ∈ X ∧ T ∼ T ′ imply
T ′ ∈ X.

We say that T and T ′ are equivalent up to stuttering and prefixing, written
T ∼p T ′, iff T is stuttering-equivalent to a prefix of T ′ or vice versa, i.e.,
∃i. T ∼ T ′�i ∨ T�i ∼ T ′ [96, 48]. For example, two sequences aaabccc(d)ω

and abbcddd(e)ω are equivalent up to stuttering and prefixing.

2.6 Probability space

A probability space (Ω,F ,P) is defined in a standard way [88], where Ω is the
sample space, F is a set of events, and P is the unique measure on F [86]. The
sample space Ω is a set of all possible outcomes of the probabilistic experiment.
Events are defined as sets of outcomes, i.e., subsets of the sample space; thus,
F is a set of all events to which probabilities are assigned by the probability
measure P. Formally, a probability space is a tuple (Ω,F ,P), where
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1. Ω �= ∅ is the sample space

2. F ⊆ P(Ω) is the set of events, such that

• Ω ∈ F
• E ∈ F implies Ω \ E ∈ F
• Ei ∈ F for i = 1, 2, . . . implies

⋃∞
i=1Ei ∈ F

3. P : F → [0, 1] is the probability measure, such that

• P(Ω) = 1

• P(
⋃∞

i=1Ei) =
∑∞

i=1 P(Ei), if Ej ∩ Ek = ∅ for all j �= k.

A probability space can be used to describe the behavior of a probabilistic
program. The main idea is that infinite paths are often assigned probability
0. For example, consider the program while (true) do x := 0 || x := 1 under a
uniform scheduler. For this example, the number of possible paths is infinite.
Each path is also infinite, and has probability 0. However, the probability of a
certain set of paths is nonzero. For instance, the probability of the set of paths
that first execute x := 0 is 1

2 . Therefore, instead of assigning probabilities to
individual paths, the function P assigns probabilities to certain sets of paths,
collected in the family F of measurable sets.

Thus, given Aδ, we can associate a probability space (Ω,F ,Pδ) over its sets
of traces. Following the definition, we set Ω = (Var → Val)ω, F contains all
sets of traces, and Pδ : F → [0, 1] is a probability measure — given by the
scheduler δ — on F , i.e., given a set X ∈ F , Pδ(X) is the probability that a
trace inside X occurs.
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Chapter 3

Scheduler-Specific
Observational Determinism

3.1 Introduction

This part discusses how to obtain appropriate formalizations of secure informa-
tion flow properties for multi-threaded programs. We start with the definition
of noninterference, a classical approach to establish a qualitative information
flow property for sequential programs. Noninterference claims that a program
is secure if changing the initial values of private variables cannot vary its set
of possible final publicly observable data [92, 83]. However, as shown in Chap-
ter 1, the requirement of deterministic public data only at the final states is not
sufficient to guarantee confidentiality for multi-threaded programs. During the
execution of a multi-threaded program, threads interact with each other; and
thus, the behavior of intermediate results should also be taken into account, as
shown in Example 1.1.

Roscoe [75] was the first to state the importance of trace determinism to
guarantee secure information flow of multi-threaded programs. Intuitively, the
execution of a multi-threaded program contains no information flow from pri-
vate data to public data when its publicly observable traces behave determinis-
tically, i.e., independent of its private data. Many researchers have attempted
to formalize this intuitive idea, and call this observational determinism, but
none of these formalizations capture it precisely [96, 48, 87]. Formalizing an
appropriate deterministic behavior for traces of multi-threaded programs is not

27
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easy. Firstly, the outcomes of multi-threaded programs depend on the schedul-
ing policy. Thus, we have to consider refinement attacks, i.e., attacks where
the attacker uses an appropriate scheduler to refine the set of possible program
traces. Secondly, we do not want the deterministic requirement to be too re-
strictive, such that many practical applications would be rejected. Thirdly, if
we consider probabilistic scenarios, where the attacker has knowledge about the
probability of scheduling events, we need to also take into account probabilistic
attacks.

Organization of the chapter. Section 3.2 starts this chapter with a dis-
cussion about limitations of the existing formal definitions of observational de-
terminism. Then, Section 3.3 presents our formalization that overcomes these
shortcomings. Section 3.4 extends the context to probabilistic settings, dis-
cussing the existing confidentiality properties that cope with probabilistic at-
tacks. Section 3.5 presents our probabilistic version of observational determin-
ism. While these two formalizations are scheduler-specific, i.e., they only guar-
antee security under a particular scheduler, Section 3.6 gives a formalization
that is scheduler-independent. Finally, Section 3.7 concludes this chapter.

Origins of the chapter. The definition of scheduler-specific observational
determinism was first published in the proceedings of the 2011 International
Conference on Formal Verification of Object-Oriented Software (FoVeOOS’11)
(revised selected papers) [47] and also in a corresponding technical report (ex-
tended version) [46]. Later, this definition appeared in the Journal of Computer
Security (JCS) (A special issue) [69]. The definition of scheduler-specific proba-
bilistic observational determinism was introduced afterwards, in the proceedings
of the 5th International Conference on Engineering Secure Software and Systems
(ESSoS’13) [68], and also in a corresponding technical report [70].

3.2 Observational determinism in the literature

3.2.1 Existing definitions of observational determinism

The idea of observational determinism is based on the classical confidential-
ity property for sequential programs, called non-interference. Non-interference
states that a program is secure iff the final states of the execution behave de-
terministically w.r.t. the private data, as formally stated below.
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Given a program C, and any two initial low-equivalent states I and I ′, i.e.,
I ∼L I

′, C is secure, if I ⇓ T and I ′ ⇓ T ′, then last(T ) ∼L last(T ′) [38].
Since for multi-threaded programs, we should also consider the leakage in

intermediate states, observational determinism generalizes non-interference by
requiring that the whole traces T and T ′ are deterministic w.r.t. private data.

To formalize the above determinism idea, the first formalization proposed by
Zdancewic and Myers [96] states that a program is observationally deterministic
iff starting in any two initial low-equivalent states, any two traces of each low
variable are equivalent up to stuttering and prefixing. In 2006, Huisman, Worah
and Sunesen [48] thought this formalization was weak, i.e., it accepts insecure
programs. They strengthened it by requiring that any two traces of each low
variable are stuttering equivalent [48]. In 2008, Terauchi argued that consid-
ering traces of each low variable individually was not strong enough to reject
insecure programs; thus, he proposed another variant of observational determin-
ism, requiring that all traces should be equivalent up to stuttering and prefixing
w.r.t. all low variables. The main difference between this definition and the two
previous ones is that instead of dealing with each low variable separately, this
one considers traces of all low variables together. However, this formalization
of deterministic behavior is also not precise. The next section discusses these
definitions’ shortcomings in detail.

Notice that these approaches consider the program execution with all possi-
ble interleavings of threads, i.e., the authors implicitly assume to use a uniform
scheduler to deploy multi-threaded programs. Thus, in the remainder of this
thesis, we use the notation A to denote an execution of a multi-threaded pro-
gram where all possible interleavings are considered. Otherwise, when a specific
scheduler δ has been used to deploy the program, we use the notation Aδ.

Given a program C, and any two initial low-equivalent states I and I ′, let
A and A′ denote two Kripke structures that model the executions of C from
I and I ′, respectively. Formally, a program C is observationally deterministic,
according to

• Zdancewic and Myers [96]: iff any two traces of each low variable are
stuttering and prefixing equivalent, i.e.,

∀T ∈ Trace(A), T ′ ∈ Trace(A′), l ∈ L. T |l ∼p T
′ |l .

• Huisman et al. [48]: iff any two traces of each low variable are stuttering
equivalent, i.e.,

∀T ∈ Trace(A), T ′ ∈ Trace(A′), l ∈ L. T |l ∼ T ′ |l .
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• Terauchi [87]: iff any two traces are stuttering and prefixing equivalent
w.r.t. all low variables, i.e.,

∀T ∈ Trace(A), T ′ ∈ Trace(A′). T |L ∼p T
′ |L .

These definitions all claim that they are scheduler-independent. Zdancewic
and Myers, followed by Terauchi, allow prefixing. This has advantage that it re-
moves the obligation to consider program termination. In particular, Terauchi’s
definition is stronger than Zdancewic and Myers’ definition as it requires equiv-
alence on traces of all low variables instead of on traces of each low variable.
The definition of Huisman et al. is stronger than the definition of Zdancewic
and Myers, as it only allows stuttering equivalence.

3.2.2 Shortcomings of these definitions

Unfortunately, all these definitions have shortcomings. Let us first briefly men-
tion them, before illustrating them all by examples. Zdancewic and Myers argue
that prefixing is a sufficiently strong requirement, as this only causes external
termination leaks of one bit of information [96]. However, Huisman et al. show
that the termination leaks might reveal more than just one bit of informa-
tion [48]. To avoid the termination channel, Huisman et al. require stuttering
equivalence between traces, instead of stuttering and prefixing equivalence as
in [96]. Further, as observed by Terauchi, an attacker might derive secret infor-
mation by observing the relative ordering of low-variable updates [87]. Thus,
it is not sufficient to require that only each low variable individually behaves
deterministically for a program to be secure. As a consequence, Terauchi re-
quires that all traces should be stuttering and prefixing equivalent w.r.t. all
low variables. However, because of allowing prefixing, Terauchi’s definition still
accepts leaky programs. Moreover, the requirement that traces have to agree on
updates to all low variables as a whole is overly restrictive, as illustrated later.

In addition, these definitions of observational determinism claim that they
are scheduler-independent. However, we show that this claim is not correct. All
these definitions accept programs that behave insecurely under some specific
schedulers.

All these shortcomings are illustrated below by several examples. In all
examples, we assume an observational model where an attacker can access the
program code, observe the traces of public data, and is able to limit the set of
possible program traces by using an appropriate scheduler.
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How allowing prefixing might reveal information

Consider the following program, from Huisman et al. [48].

Example 3.1 Suppose S ∈ H and O1,O2 ∈ L.

O1 := 0; O2 := 0;
while (S > 0) do {O1 := O1+ 1; S := S − 1};
O2 := 1

If we execute this program from several low-equivalent initial states for different
values of S , we obtain the following traces. A trace is denoted by a sequence of
low-value states, containing the values of low variables in order, i.e., (O1, O2).

Case S = 1 : T |L = [(0, 0), (1, 0), (1, 1)]
Case S = 2 : T |L = [(0, 0), (1, 0), (2, 0), (2, 1)]
Case S = 3 : T |L = [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1)]
Case S = 4 : T |L = [(0, 0), (1, 0), · · · , (4, 0), (4, 1)]
...

Since traces of each low variable are stuttering and prefixing equivalent, this
program is observationally deterministic according to Zdancewic and Myers.
However, this program is insecure, because the final value of O1 reveals the
initial value of S . This illustrates that allowing prefixing can reveal serious
secret information via termination leaks.

Terauchi strengthens the definition of Zdancewic and Myers by requiring
that the traces need to agree on the updates to low variables as a whole, instead
of just to individual one. Therefore, Example 3.1 is rejected by Terauchi. How-
ever, Terauchi’s definition still accepts programs that leak partial information,
because of allowing prefixing, as illustrated by the following example.

Example 3.2 Suppose S is a Boolean, 0 or 1, and consider a uniform sched-
uler,

O1 := 0;O2 := 0;
{if (O1 = 1) then (O2 := S ) else skip}

∣∣∣∣O1 := 1

Case S = 0 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 0)] execute C2 first

Case S = 1 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 1)] execute C2 first
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According to Zdancewic and Myers, and Terauchi, this program is observation-
ally deterministic. However, when S = 1, we can terminate in a state where
O2 = 1. Thus, if the value of O2 changes, an attacker can conclude surely that
S = 1; thus partial information is still leaked because of prefixing.

Zdancewic and Myers, and Terauchi allow prefixing, since they consider that
termination can only reveal one bit of information, and technically, prefixing
simplifies the type systems that verify the property. However, we think that
prefixing might cause serious leakage, as shown in Example 3.1, and therefore,
only stuttering equivalence should be allowed.

How the relative ordering of updates might reveal information

Zdancewic and Myers (followed by Huisman et al.) consider traces of each low
variable independently. Thus, this cannot avoid attacks based on the observation
of the relative ordering of low-variable updates. Consider the following program,
from Terauchi [87].

Example 3.3

O1 := 0;O2 := 0;
if (S > 0) then {O1 := 1; O2 := 1}

else {O2 := 1; O1 := 1}

If we execute this program, we get traces of the following shapes.

Case S > 0 : T |L = [(0, 0), (1, 0), (1, 1)]
Case S ≤ 0 : T |L = [(0, 0), (0, 1), (1, 1)]

Attackers can learn information about S by observing whether O1 is updated
before or afterO2. This shows that it is not sufficient to require the deterministic
behavior of each low variable for a program to be secure. Terauchi solves this
by requiring the determinism of traces of all low variables, but this results in an
overly restrictive definition of observational determinism, as illustrated next.

How too strong conditions might reject too many programs

The restrictiveness of Terauchi’s definition stems from the fact that no varia-
tion in the relative ordering of updates is allowed. This rejects many harmless
programs, as follows.
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Example 3.4
O1 := 0; O2 := 0;
O1 := 3 ||O2 := 4

C1 is executed first: T |L = [(0, 0), (3, 0), (3, 4)]
C2 is executed first: T |L = [(0, 0), (0, 4), (3, 4)]

This program is rejected by Terauchi, since not all traces are stuttering and
prefixing equivalent w.r.t. all low variables.

How scheduling policies might be exploited by attackers

The authors of [96, 48, 87] do not consider the effect of schedulers on the exe-
cution of multi-threaded programs, i.e., all possible interleavings of threads are
enabled. However, the security of a multi-threaded program depends strongly
on the scheduler’s behavior, since it decides how the threads are deployed. In
practice, the scheduler may vary from execution to execution. Under a specific
scheduler, some traces cannot occur. Since we assume that an attacker knows
the program’s source code, if he uses an appropriate scheduler, secret informa-
tion might be revealed from the limited set of possible traces. This sort of attack
is called refinement attack [78, 16], since the choice of scheduling policy refines
the set of possible program traces.

The existing definitions of observational determinism claim that they are
scheduler-independent. However, this claim is not correct, as illustrated by the
following examples.

Example 3.5 Consider the following program,

O := 0;
{{if (S > 0) then sleep(n)}; O := 1}

∣∣∣∣O := 0

where sleep(n) abbreviates n consecutive skip commands.

Under a uniform scheduler, the initial value of S cannot be derived. However,
suppose we execute this program using a round-robin scheduling policy, i.e., the
scheduler that picks a thread, and then proceeds to run that thread for m steps,
before giving control to the next thread. If m < n, we obtain traces of the
following shapes.

Case S ≤ 0 : T |L =

{
[(0), (1), (0)] execute C1 first
[(0), (0), (1)] execute C2 first

Case S > 0 : T |L =

{
[(0), . . . , (0), (1)] execute C1 first
[(0), . . . , (0), (1)] execute C2 first
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Thus, only when S ≤ 0, we can terminate in a state where O = 0. When S > 0,
traces only terminate in a state where O = 1, since the round-robin scheduler
does not let C1 finish the sleep command before giving the turn to C2. Thus,
the final value of O might reveal whether S is positive or not. However, this
program is accepted by the definitions of Zdancewic and Myers, and Terauchi;
and thus, it shows that Zdancewic and Myers, and Terauchi’s definitions are
not scheduler-independent.

In this example, there is an encoding of a timing leak into an implicit flow
(by using an appropriate scheduler). Hence, this attack is also called internal
observable timing attack [96, 80, 76]. During the execution of a multi-threaded
program, without access to a clock, the attacker is still able to learn information
about the private data from observing the internal timing of actions. This makes
this attack highly dangerous. Often a timing leak does not manifest itself when a
scheduler is completely uniform, but only when a more deterministic scheduling
policy is used.

Huisman et al. reject the above example, because of prefixing. However,
the following example shows that the definition of Huisman et al. is also not
scheduler-independent.

Example 3.6 Consider a program consisting of 3 threads as follows,

O1 := 0; O2 := 0;

{if (S > 0) then O1 := 1 elseO2 := 1}∣∣∣∣ {O1 := 1;O2 := 1}∣∣∣∣ {O2 := 1;O1 := 1}

This program is secure under a uniform scheduler, and it is accepted by the
definitions of Zdancewic and Myers, and Huisman et al. An attacker can not
derive secret information by observing the values of low variables, since the
changes of each low variable does not depend on the high variable S . In addition,
secret information cannot be derived from the observation of relative ordering
of updates also, since whether O1 or O2 is updated first does not depend on
the value of S .

However, when an attacker chooses a scheduler which always executes the
leftmost thread first, he gets only two different kinds of traces: when S > 0,
T |L = [(0, 0), (1, 0), (1, 1), . . .]; otherwise, T |L = [0, 0), (0, 1), (1, 1), . . .].
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According to this set of traces, this program is still accepted by the defini-
tions of Zdancewic and Myers, and Huisman et al. but the secret information
is revealed by observing whether O1 is updated before O2, i.e., when O1 is
updated before O2, the attacker knows that S > 0.

To conclude, the examples above show that the existing definitions of ob-
servational determinism accept programs that reveal private data, since they
allow equivalence up to prefixing, as in the definitions of Zdancewic and Myers,
and Terauchi, or do not consider the relative ordering of updates, as in the
definitions of Zdancewic and Myers, and Huisman et al. Besides, the definition
of Terauchi is overly restrictive, rejecting many secure programs. In addition,
all these definitions are not scheduler-independent. They accept programs be-
having insecurely under a specific scheduling policy. This is our motivation to
propose a new definition of observational determinism that is scheduler-specific.
We would like that this definition on the one hand rejects any leaky program,
but on the other hand, is less restrictive on harmless programs, in comparison
to Terauchi’s definition. Besides, having a confidentiality property that is para-
metric over the scheduler allows us to quantify which scheduler (or classes of
schedulers) can be used to securely execute a program.

3.3 Scheduler-specific observational determinism

A non-deterministic multi-threaded program is secure w.r.t. a particular sched-
uler iff no secret information can be derived from the observation of public-data
traces, or from the observation of ordering of public data updates. This is cap-
tured formally by the definition of scheduler-specific observational determinism.

As shown in [96], to be secure, a multi-threaded program must enforce a
deterministic order on the accesses to a single low variable, i.e., the sequence of
operations performed at a low variable is deterministic. Therefore, SSOD’s first
condition requires that any two traces of each low variable starting in any two
initial low-equivalent states I1 and I2 are stuttering equivalent. This condition
ensures that no secret information can be derived from public-data traces, since
when each low variable individually evolves deterministically, the public values
are independent of the private data. Notice that requiring only the existence of
a single matching low-variable trace is not sufficient, as in the following example.

Example 3.7 Consider the following program, where S is a Boolean,

if (S ) then {O := 0;O := 1} ||O := 0

else {O := 0;O := 1} || {O := 0;O := 0}
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This program leaks information under a uniform scheduler, since when S is 1,
O is more likely to contain 1 than 0 in final states. However, there always exists
a matching trace for O . Therefore, we require instead that all traces of each
low variable are deterministic. This deterministic property of traces also avoids
cache attacks, i.e., attacks that exploit the timing behavior of threads via the
cache to derive secret information [96].

Notice that the transition relation of the Kripke structure is non-blocking,
i.e., there is a self-loop at each final state. Thus, the attacker cannot detect
termination. However, the termination leaks, which might reveal more than one
bit of information [10], are avoided by requiring stuttering equivalence between
traces, instead of stuttering and prefixing equivalence as in [96, 87].

SSOD also requires that, given any two initial low-equivalent states I and
I ′, for every trace starting in I, there exists a trace that is stuttering equivalent
w.r.t. all low variables, starting in I ′. This existential condition on traces, which
depends strongly on the scheduler used to execute the program, makes SSOD
scheduler-specific. This second condition of SSOD ensures that any difference
in the relative ordering of updates is coincidental, thus, no information can be
deduced from it.

Formally, SSOD is defined as follows,

Definition 3.1 (SSOD) Given a scheduler δ, a program C respects SSOD w.r.t.
L and δ, iff for any two initial low-equivalent states I and I ′,

SSOD-1 ∀T ∈ Trace(Aδ), T
′ ∈ Trace(A′

δ), l ∈ L. T |l ∼ T ′ |l

SSOD-2 ∀T ∈ Trace(Aδ). ∃T ′ ∈ Trace(A′
δ). T |L ∼ T ′ |L

where Aδ and A′
δ denote two Kripke structures corresponding to I and I ′, re-

spectively. Program C is scheduler-specific observational deterministic w.r.t. a
set of schedulers Δ if it is so w.r.t. any scheduler δ ∈ Δ.

In contrast to other formalizations of observational determinism, our SSOD
explicitly considers the effect of the scheduler that is used to execute the pro-
gram. Since traces model the runs of a program under a particular scheduler,
when the scheduling policy changes, some traces cannot occur, and also, some
new traces might appear ; thus the new set of traces may not respect our re-
quirements.

Notice that the question which classes of schedulers appropriately model
real-life attacks is orthogonal to our results: our definition is parametric on the
scheduler.
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Simplified SSOD. Notice that we can simplify SSOD by replacing SSOD-1
with SSOD-1A as follows. Intuitively, SSOD-1A requires that, given a Kripke
structure Aδ that corresponds to any initial state, after projecting on any l ∈ L,
all traces are stuttering equivalent,

SSOD-1A ∀l ∈ L. T, T ′ ∈ Trace(Aδ). T |l ∼ T ′ |l .

SSOD-1A and SSOD-2 are equivalent to SSOD-1 and SSOD-2.

Theorem 3.1 If a program is scheduler-specific observational deterministic
w.r.t. L and a scheduler δ, then

SSOD-1 & SSOD-2 ⇔ SSOD-1A & SSOD-2.

Proof:

1. SSOD-1 & SSOD-2 ⇒ SSOD-1A

Given any two traces T1, T2 ∈ Trace(Aδ), and any T ′ ∈ Trace(A′
δ).

According to SSOD-1, ∀l ∈ L, T1 |l ∼ T ′ |l ∧ T2 |l ∼ T ′ |l . Therefore, we
can conclude that ∀l ∈ L. T1 |l ∼ T2 |l .

2. SSOD-1A & SSOD-2 ⇒ SSOD-1

Given any traces T ∈ Trace(Aδ), T
′ ∈ Trace(A′

δ). According to SSOD-2,
there exists a trace T ′′ ∈ Trace(A′

δ) such that T |L ∼ T ′′ |L . If T |L ∼ T ′′ |L ,
then ∀l ∈ L. T |l ∼ T ′′ |l . According to SSOD-1A, ∀l ∈ L, T ′ |l ∼ T ′′ |l ,
then ∀l ∈ L. T |l ∼ T ′ |l .

�

3.3.1 Properties of SSOD

To summarize, we explicitly list different properties of SSOD.

Property 1 (Deterministic public behavior.) If a program is accepted by
SSOD, no secret information can be derived from the observable data traces.
SSOD-1 requires that the low variables individually evolve deterministically, and
thus, private data cannot affect their values. Besides, by not allowing prefix-
ing on traces, SSOD also prevents the execution from leaking information via
non-deterministic behavior of public data in final states, i.e., the termination
channel.
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Property 2 (Deterministic relative ordering of updates) If a program is
accepted by SSOD, the relative ordering of updates is independent from private
data. This is ensured by SSOD-2: there always exists a matching trace w.r.t.
all low variables (for any possible low-equivalent initial state).

Property 3 (Less restrictive on harmless programs) Compared with
Terauchi’s definition, SSOD is more permissive. SSOD differs from Terauchi’s
definition in one important aspect: the existential condition on traces. SSOD-2
releases the requirement that all traces have to agree on the relative ordering of
low-variable updates.

Example 3.4 and 3.6, which are secure, are accepted by our definition instanti-
ated with a uniform scheduler, but rejected by Terauchi’s definition. However,
SSOD is strong enough to reject Example 3.3, where the relative ordering of
updates reveals information about S .

SSOD-2 is scheduler-specific. For example, the insecure Examples 3.1, 3.2,
3.3, and 3.5 are rejected by SSOD with the given scheduler. The program in
Example 3.6 is secure under a uniform scheduler, and it is accepted by our
definition instantiated accordingly. However, it is insecure under more deter-
ministic schedulers that have a smaller set of possible traces. For example, if it
is executed under a scheduler that always chooses the leftmost thread first, it is
rejected by SSOD.

3.3.2 Limitations of SSOD

Even though the properties above illustrate that SSOD captures observational
determinism well, there are still some limitations. In particular, SSOD cannot
avoid external timing attacks, and it cannot distinguish between a nondetermin-
istic evolution of a low variable that depends on secret data and the one that
does not. Notice that these limitations also apply to other definitions of observa-
tional determinism. Besides, since we do not take into account the probabilistic
behavior of programs and schedulers for SSOD, thus, probabilistic attacks are
not relevant to this property.

External observable timing attacks. All definitions of observational de-
terminism, including ours, do not consider externally observable timing attacks.
External timing observations are those made by an observer who can time the
execution with mechanisms external to the computing system. This makes the
capacity of attackers too powerful to prevent an attack. Consider the following
program and its execution traces.



3.3. Scheduler-specific observational determinism 39

Example 3.8

O := 0;
if (S > 0) then O := 7

else { sleep(100); O := 7 }

Case S > 0 : T |O = [(0), (7)]
Case S ≤ 0 : T |O = [(0), (0), . . . , (0), (7)]

This program is accepted by all definitions of observational determinism.
However, if the program-execution time is considered low-observable, an at-
tacker with a stop watch can learn information about S , by simply measuring
the execution time.

In order to handle these attacks, the security property must be very restric-
tive, ensuring also that the execution time is independent of private data. A
definition requiring equivalence instead of stuttering equivalence might handle
this formally, but would impose severe restrictions on how the program is ac-
tually executed on the hardware. Therefore, we do not consider this further
here.

Rejecting all non-deterministic programs. A consequence of SSOD-1
(and all other formalizations of observational determinism) is that programs
that do not contain private data, but whose behavior are non-deterministic are
also rejected. For example, the harmless program O := 0 ||O := 1 is rejected. A
reason to reject this program comes from the observation that it is impossible
to distinguish between the low traces of O := 0 ||O := 1, and the low traces of

if (S > 0) then {O := 0; O := 1} else {O := 1; O := 0},
which leaks secret information. Therefore, observational determinism rejects
any program that is non-deterministic in its low behavior, even when it does
not contain any private data. However, as shown by the literature [96], this
deterministic property of low variables is necessary to avoid cache attacks.

Notice that the program O1 := 3 ||O2 := 4 in Example 3.4 is considered
secure, since it writes to two different locations.

Probabilistic attacks. SSOD is a possibilistic secure information-flow prop-
erty: it only considers the non-determinism that is possible in an execution, but
it does not consider the probability that an execution will happen. When the
scheduler’s behavior is probabilistic, some threads might be executed more often
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than others, which opens up the possibility of a probabilistic attack, as in the
following example.

Example 3.9

O1 := 0; O2 := 0;
if (S > 0) then {O1 := 1 ||O2 := 1} else {O1 := 1 ||O2 := 1}

Consider a scheduler that, when S > 0, picks thread O1 := 1 first with probabil-
ity 3/4; otherwise, it chooses threads with equal probabilities. With this sched-
uler, we can learn information about S from the probabilities of public-data
traces. However, the program is still accepted by SSOD w.r.t. this scheduler,
since SSOD only considers the existence of traces, not their probabilities.

To extend our proposal of the confidentiality property to a larger context, we
consider also programs that have probabilistic behaviors. For such programs, to
prevent information leakage under probabilistic attacks, several notions of prob-
abilistic noninterference have been proposed [93, 80, 82]. The following sections
discuss these properties, together with their limitations, and then introduce a
probabilistic version of observational determinism.

3.4 Probabilistic noninterference in the litera-
ture

The first to come up with a notion of probabilistic noninterference are Volpano
and Smith [93]. Their definition is based on a lock-step execution of probabil-
ity distributions on states. Given any two distributions μ1, μ2 ∈ D(S), these
distributions are indistinguishable from the low observer’s point of view, de-
noted μ1

∼= μ2, iff after projecting out high variables, they are the same w.r.t.
commands and low variables. Let M denote the stochastic transition matrix
where the element mij of M is the probability of a transition from state i to
state j. Given a distribution μ, every following distribution μ′ is computed as
μ′ = μ ·M . A program C is probabilistically secure according to Volpano and
Smith, if for any two initial distributions μ1

∼= μ2, we have that μ1 ·M ∼= μ2 ·M .
Thus, intuitively, given any two initial low-equivalent states, the traces of the
program execution starting in these two initial states, after projecting out high
variables, are exactly the same.

As shown by Sabelfeld and Sands, this definition is too restrictive, because of
the requirement that commands should be syntactically equal [80]. For example,
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any two distributions with syntactically different commands will be rejected even
if they are indistinguishable w.r.t. low variables and probabilities. Consider the
following example (from [80], or any program with conditionals and no low
variable).

Example 3.10

if (S > 0) then S := S + 1 else S := S − 1

Intuitively, the low behavior of this program is the same w.r.t. any initial
value of S , since this program does not modify O . However, consider two states
where (S = 3,O = 0), and (S = −3,O = 0). Let μ1 and μ2 denote two
distributions as follows,

μ1 = {〈if (S > 0) then S := S + 1 else S := S − 1, (3, 0)〉 �→ 1}

(it says that the probability of being in state 〈if (S > 0) then S := S + 1 else

S := S − 1, (3, 0) 〉 is 1) and

μ2 = {〈if (S > 0) then S := S + 1 else S := S − 1, (−3, 0)〉 �→ 1} .

Here, we have μ1
∼= μ2. Now, μ1 ·M = {〈S := S + 1, (3, 0)〉 �→ 1} and μ2 ·M =

{〈S := S − 1, (−3, 0)〉 �→ 1}. After projecting out the high variable, different
sets of commands imply that μ1 ·M �∼= μ2 ·M . Thus, the definition of Volpano
and Smith rejects this secure program.

Therefore, Sabelfeld and Sands propose another definition of probabilistic
noninterference. This definition is based on a probabilistic low-bisimulation that
reflects the equivalence on the program’s probabilistic behavior visible for at-
tackers [80]. This definition also takes into account the role of schedulers on
confidentiality, i.e., it is scheduler-specific. This criterion requires that given
any two initial low-equivalent states, for any trace that starts in an initial state,
there exists a trace that starts in the other initial state, and passes through the
same equivalence classes of states at the same time, with the same probability.

Aiming to be a probabilistic- and timing-sensitive security property, this
definition is very restrictive w.r.t. timing, i.e., it cannot accommodate threads
whose running time depends on high variables, as a harmless program of the
following shape:

O1 := 0; O2 := 0;
if (S1 > 0) then {O1 := 3; O1 := 3; O2 := 4} else {O1 := 3; O2 := 4}
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Besides, probabilistic noninterference by Sabelfeld and Sands also puts re-
strictions on unreachable states, e.g.,

O := 1; if (O = 0) thenO := S else skip

is secure but rejected. This definition defines two program commands to be
probabilistically low-bisimilar iff given any two low-equivalent states — including
unreachable states, these two commands are indistinguishable in probabilistic
low-behavior. Thus, probabilistic noninterference rejects the above program,
since it considers also the case when the conditional statement is executed from
an unreachable state, e.g., where O equals 0, see [19].

To overcome the limitations of the probabilistic low-bisimulation, Smith pro-
posed to use a weak probabilistic bisimulation [82]. Weak probabilistic bisim-
ulation allows two traces to be equivalent if they reach the same outcome, but
one runs slower than the other. This definition does not consider unreachable
states, and is more tolerant w.r.t. timing.

However, weak probabilistic bisimulation still demands that any two bisim-
ilar states have to reach states in the same equivalence classes with the same
probability. This probabilistic condition is restrictive, since even when the prob-
abilities of the two matching traces are the same, i.e., trace occurrences do not
depend on high variables, weak probabilistic bisimulation still rejects the pro-
gram. This is illustrated via the following situation.

Suppose we have an observationally deterministic program whose execu-
tions from the initial state a are given below. This program is rejected by
(weak) probabilistic bisimulation, since basically, these Kripke structures are
not probabilistic bisimilar. However, no secret information can be derived from
probabilistic attacks, since the probabilities of trace occurrences are identical.
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In addition, all bisimulation-based definitions mentioned above do not re-
quire the determinism of each low variable. As mentioned before, we insist that
a multi-threaded program must enforce a deterministic order on the access to
every low variable.
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In comparison between two bisimulation-based formalizations, Sabelfeld and
Sands’ definition is more restrictive. However, it can be used to construct a
confidentiality property that is closed under both sequential and parallel com-
position, while Smith’s weak bisimulation (and also our formalization presented
below) do not have this property.

Summarizing, all these existing definitions of probabilistic confidentiality
are not satisfactory for probabilistic multi-threaded programs. Therefore, we
coin the notion of scheduler-specific probabilistic-observational determinism. It
ensures that accepted programs do not leak secret information, while being
significantly less restrictive on secure programs, e.g., w.r.t. timing behavior.

3.5 Scheduler specific probabilistic observational
determinism

A probabilistic program is secure w.r.t. a particular scheduler iff no secret
information can be derived from the observation of public-data traces, from
the ordering of public-data updates, and also from the probabilities of traces.
This is captured formally by the definition of scheduler-specific probabilistic-
observational determinism (SSPOD).

As discussed before, to be secure, a multi-threaded program must enforce a
deterministic order on the accesses to a single low variable. Consider a trace
that stutters forever in a non-final stuttering loop. Since a non-final loop must
contain at least one state having a transition that goes out of the loop, this loop
contains a transition with a probability less than 1. Thus, the probability of a
trace to end up in a non-final stuttering loop is 0, Therefore, SSPOD-1 requires
that for any initial state, traces of each low variable that do not end in a non-final
stuttering loop are stuttering equivalent with probability 1. Basically, SSPOD-1
requires the determinism of each low variable in the probabilistic context.

SSPOD also requires that, given any two initial low-equivalent states I and
I ′, for every trace starting in I, there exists a trace that is stuttering equiva-
lent w.r.t. all low variables, starting in I ′, and the probabilities of these two
matching traces are the same. As mentioned before, this existential condition
ensures that any difference in the relative ordering of updates is coincidental.
In addition, SSPOD also guarantees that no private information can be derived
from the probabilistic distribution of traces, since indistinguishable traces occur
with the same probabilities.

Let (Ω,F ,Pδ) denote the probability space of a PKS Aδ with an initial state
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I. If X is a set of traces that end in a non-final stuttering loop, and are closed
under stuttering equivalence, Pδ[X] equals 0. SSPOD is formally defined as
follows.

Definition 3.2 (SSPOD) Given a scheduler δ, a program C respects SSPOD
w.r.t. L and δ, iff for any initial state I,

SSPOD-1 For any l ∈ L, let X ∈ F be any set of traces closed under stuttering
equivalence w.r.t. l, we have Pδ[X] = 1 or Pδ[X] = 0.

SSPOD-2 For any initial state I ′ that is low-equivalent with I, for all sets of
traces X ∈ F that are closed under stuttering equivalence w.r.t. L, we
have Pδ[X] = P′

δ[X], where (Ω,F ,P′
δ) denote the probability space of Aδ

with initial state I ′.

Program C is scheduler-specific probabilistic-observational deterministic w.r.t.
a set of schedulers Δ if it is so w.r.t. any scheduler δ ∈ Δ.

In addition to the properties of SSOD, SSPOD has another property,

Property 4 (Deterministic probabilistic public behavior.) If a program
is accepted by SSPOD, the probabilistic behavior of its public-data traces is in-
dependent of the private data.

For example, Example 3.9, with the given scheduler, is rejected by SSPOD, since
it reveals secret information under a probabilistic attack.

Besides, SSPOD is less restrictive than the definition of Sabelfeld and Sands
[80], since it does not require the probability equality involved in each execution
step. SSPOD is also less restrictive w.r.t timing, e.g., SSPOD accepts

O1 := 0; O2 := 0;
if (S1 > 0) then {O1 := 3; O1 := 3; O2 := 4} else {O1 := 3; O2 := 4}

SSPOD also does not put restrictions on unreachable states, i.e., it accepts

O := 1; if (O = 0) thenO := S else skip,

that is rejected by probabilistic noninterference.
Notice that, in fact, SSPOD-1 is weaker than SSOD-1. SSPOD-1 only re-

quires stuttering equivalence on the traces that do not end in a non-final stut-
tering loop, while in SSOD, the property must hold on all possible traces.
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3.6 Scheduler-independent observational deter-
minism

The next question is whether there exists a scheduler and a security specifica-
tion such that if a program is accepted by this security condition, it is secure
under any scheduling policy. This motivates our formalization of scheduler-
independent observational determinism.

The execution of a program under a uniform scheduler contains all possible
interleavings of threads. Thus, given any scheduling policy δ, the set of pos-
sible program traces under δ is a subset of the set of program traces under a
uniform scheduler. Thus, if each trace produced from one initial states under
a uniform scheduler matches with every trace produced from the other initial
low-equivalent state w.r.t. all low variables, then with any other scheduler, the
traces of the execution satisfy both SSOD or SSPOD. For example, the program
O := 3 || S := 5 || skip is secure w.r.t. any scheduling policy.

Therefore, the formal definition of scheduler-independent observational de-
terminism can be stated as follows,

Definition 3.3 (Scheduler-independent observational determinism) A
program C is scheduler-independent observationally deterministic w.r.t. L iff
for any two initial low-equivalent states I and I ′, the following condition is
satisfied.

∀T ∈ Trace(A), T ′ ∈ Trace(A′). T |L ∼ T ′ |L .

Remember that A denotes a program execution where all possible interleavings
are considered.

The following theorem states that if a program is accepted by Definition 3.3,
it is also δ-specific observationally deterministic under any other scheduler δ.

Theorem 3.2 Given a uniform scheduler, for any two initial low-equivalent
states I and I ′, if all possible traces starting in I and I ′ are stuttering equivalent
w.r.t. all low variables, this program is secure w.r.t. any scheduling policy.

Proof: Any scheduling policy is a refinement of a uniform scheduling policy.
Consider any scheduler δ. If a program satisfies Definition 3.3, any two traces
are stuttering equivalent w.r.t. all low variables. Thus, SSOD-2 and SSPOD-2
follow directly. Besides, any traces are also stuttering equivalent w.r.t. each
low variable. Thus, SSOD-1A and SSPOD-1 are also respected. Therefore, the
program is δ-specific observationally deterministic. �
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3.7 Conclusions

This chapter introduced the notions of scheduler-specific observational deter-
minism via two formalizations, i.e., SSOD formalizes the confidentiality property
for multi-threaded programs, while SSPOD is the formalization for probabilis-
tic multi-threaded programs. These properties take into account the effect of
schedulers on execution traces. Thus, given a scheduling policy δ, if a program
is accepted by SSOD, or SSPOD if the program is probabilistic, instantiated
for this scheduler, the program execution under the scheduler δ does not leak
secret information. SSOD and SSPOD capture the intuition of the confidential-
ity properties for multi-threaded programs better than other formalizations of
observational determinism in the literature.

This chapter also presented a scheduler-independent confidentiality prop-
erty. If a program is accepted by this security requirement, it is robust w.r.t.
refinement attacks, i.e., the program execution does not leak secret information
under any scheduling policy.

After having presented these improved definitions of observational determin-
ism, the next chapters discuss how these properties can be verified automatically.
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Chapter 4

Logic-based Verification

4.1 Introduction

While various, subtly different approaches to formalize the confidentiality prop-
erty for multi-threaded programs have been proposed, efficient verification tech-
niques for these properties are still lacking. Classical approaches to verify in-
formation flow properties are typically based on type systems : if a program can
be typed, it ensures secure information flow. Except Huisman et al, to check
confidentiality properties for multi-threaded programs, Zdancewic and Myers,
Sabelfeld et al., Terauchi, Smith [96, 80, 87, 82] use type systems. Type sys-
tems are efficient, i.e., they are often polynomial in the size of the program [87].
However, type-based approaches are imprecise, and insensitive to control flow.
Type-based approaches are not suitable to verify our information flow properties
for multi-threaded programs, for several reasons:

• Firstly, type systems for multi-threaded programs often aim to prevent
information leakage from the thread timing behavior of a program, e.g.,
secret information should not be derivable from the observation of the
internal timing of actions [96]. To achieve this goal, type systems are
often very restrictive. This restrictiveness makes programming in practice
very difficult; many intuitively secure programs are rejected by many type-
based approaches, i.e., S := O ;O := S .

• Secondly, it is difficult to enforce stuttering equivalence via type-based
approaches without being overly restrictive [87]. Stuttering equivalence

49
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makes the problem of verification more difficult, since we have to check
whether the state changes on traces match each other, forever.

• Thirdly, type systems are not very flexible, i.e., they need to be rede-
fined and proven sound for each modification to the information security
policy [15].

• Finally, type systems are often used to verify universal properties — prop-
erties that hold on all execution traces — or bisimulation-based properties.
They are not suitable to verify existential properties as the ones in our
formalizations of observational determinism.

Therefore, recent work on adopting techniques from model checking [16, 34,
48] is emerging as an alternative approach to gain better precision. This thesis
develops different methods to verify our information flow properties by com-
bining newly developed and existing model-checking algorithms. This chapter
introduces a logic-based verification method which implements the idea of self-
composition, while the next chapter develops algorithmic verification techniques.

Self-composition is a technique to transform the verification of information
flow properties into a standard safety verification problem [15, 34]. The basic
idea is that we compose a program C with a copy, denoted C ′, i.e., we execute
C and C ′ in parallel, and consider C||C ′ as a single program (called a self-
composed program). Program C ′ is a copy of C, but all variables are renamed
to make them distinguishable from the variables in C [15, 34]. In this composed
model, the two programs C and C ′ are still distinguished; and therefore, we can
express the information flow property as a property over the execution traces
of the self-composed program C||C ′.

Organization of the chapter. Concretely, this chapter shows that the
definition of scheduler-specific observational determinism (SSOD) can be char-
acterized by a temporal-logic formula. The essence of observational determinism
is stuttering equivalence on execution traces. Thus, firstly, Section 4.2 inves-
tigates the characteristics of stuttering equivalence, and discusses which extra
information is needed to characterize it in temporal logic. Based on the idea
of self-composition and the extra information, Section 4.3 defines a program
model, and then gives a temporal-logic formula that characterizes stuttering
equivalence. SSOD is then expressed in terms of this logic characterization.
This results in a conjunction of an LTL and a CTL formula. Both formulas
are evaluated over a Kripke structure associated to the self-composed program.
This section also shows that the validity of these formulas is equivalent to SSOD.
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Thus, the characterization as a model-checking problem is sound and complete.
Finally, Section 4.4 concludes the chapter. Notice that Section 5.7 will discuss
related work in both logic-based and algorithmic verification approaches.

Origins of the chapter. This logic-based verification method was published
in the proceedings of the 2011 International Conference on Formal Verification
of Object-Oriented Software (FoVeOOS’11) (revised selected papers) [47], and
also in a corresponding technical report (extended version) [46].

4.2 Characterization of stuttering equivalence
and program model

First, we look at the characteristics of stuttering equivalence. Let symbols a,b,c,
etc. represent states in traces. Given T ∼ T ′ as follows,

index: 0 1 2 3 4 5 . . .
T = a b c d d d . . .

number of state changes in T : 0 1 2 3 3 3

T ′ = a a b b c d . . .
number of state changes in T ′: 0 0 1 1 2 3

The top row indicates indexes of states. The row below each trace indicates
the numbers of state changes, counted from the first state, that happened in
a trace. Based on this example, we make some general observations about
stuttering equivalence:

• Consider a state change that occurs first in trace T , e.g., at index i. The
first property is that this state change will also occur later in trace T ′, at
some index j ≥ i. For example, the state change from b to c occurs first
in T at T2, while in T ′, this change occurs at T ′

4.

• The second property is that for any index r between such a first and
second occurrence of a state change, i.e., i ≤ r < j, the total number of
state changes at state T ′

r is strictly smaller than the total number of state
changes at Tr. For example, for any r such that 2 ≤ r < 4, the number
of state changes at T ′

r is smaller than the number of state changes at Tr,
e.g., at T ′

3, the total number of state changes is 1 (a → b) while at T3,
the total number of state changes is 3 (a → b, b → c, and c → d). And
similarly for r = 2.
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• Similarly for any change that occurs first in trace T ′.

These properties characterize exactly stuttering equivalence, and form the
basis for our temporal-logic characterization later.

4.2.1 State properties

To characterize stuttering equivalence between two traces in temporal logic, we
construct a program model based on the idea of self-composition. We compose
a program C with its copy C ′ in parallel, and consider C||C ′ as a single pro-
gram. Via this model, we are able to express stuttering equivalent property as
a temporal-logic formula over a composed trace of the self-composed program.
As a convention, we use T 1 and T 2 to denote the two component traces. Thus,
the ith state of the composed trace contains both T 1

i and T 2
i . The essence of

stuttering equivalence is that any state change occurring in one trace also occurs
in the other trace. Therefore, we extend the state with extra information that
allows us to determine for a particular state: (1) whether the current state is
different from the previous one, (2) whether a change occurs first or second, and
(3) how many state changes have already happened.

State changes

To determine whether a state change occurs, we need to know the previous
state. Therefore, we define a memorizing transition relation, remembering the
previous state of each transition.

Definition 4.1 (Memorizing transition relation) Let →⊆ (S × S) be a
transition relation. The memorizing transition relation →m⊆ (S ×S)× (S ×S)
is defined as: (c, c′) →m (d, d′) ⇔ c→ d ∧ d′ = c.

Thus, (c, c′) makes a memorizing transition to (d, d′) if (1) c makes a transition
to d in the original system, and (2) d′ remembers the old state c. We use
accessor functions current and old to access components of a memorized state,
such that current(c, c′) = c ∧ old(c, c′) = c′. A state change can be observed
by comparing the old and current components of a single state.

The order of state changes

To determine whether a state change occurs for the first time in trace or has
already occurred in the other trace, we use a queue of states, denoted Q. Its
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contents represents the difference between the two traces. We have the following
operations and queries on a queue: add , adds an element to the end of the
queue, remove, removes the first element of the queue, and first , returns the
first element of the queue. In addition, we use an extra state component lead ,
which indicates which component trace added the last state in Q, i.e., lead = m
(m = 1, 2), if the last element in Q was added from Tm. Initially, the queue is
empty (denoted ε), and lead is 0.

The rules to add/remove a state to/from the queue are the following. When-
ever a state change occurs for the first time in Tm, the current state is added to
the queue and lead becomesm. When this change occurs later in the other trace,
the element will be removed from the queue. When a state change in one trace
does not match with the change in the other trace, both Q and lead become
undefined, denoted ⊥, indicating a blocked queue. If q = ⊥ (and lead = ⊥),
two component traces are not stuttering equivalent, and thus, we do not need
to check the remainders of the traces. Therefore, when Q and lead are ⊥,
operations add and remove are not defined.

Formally, these rules for adding and removing are defined as follows. Initially,
Q is ε and lead is 0. Whenever Q �= ⊥ and Tm

i �= Tm
i−1 (m = 1, 2),

• if lead = 3 − m and Tm
i = first(Q), then remove(Q). If Q = ε, set

lead = 0.

• if lead = m or lead = 0, then add(Q, Tm
i ), and set lead = m.

• otherwise, set Q = ⊥ and lead = ⊥.

Example 4.1 Consider two traces T 1 and T 2 with the same initial states, as
follows.

T 1 = a a b c d d . . .
T 2 = a b b c c e . . .
Q ε b ε ε d ⊥ ⊥

index 0 2 0 0 1 ⊥ ⊥

Initially, Q = ε and lead = 0. A state change from a to b occurs first in T 2, at
T 2
1 . Thus, the current component b is added to Q. Thus, Q would be b and

lead becomes 2. In T 1, the same state change occurs at T 1
2 . Since lead is 2, it

indicates that this is not a first-occurring change. Since T 1
2 = first(Q) — the

same change has occurred in the other component trace — the element b in Q
is removed. Thus, Q becomes ε and lead becomes 0.
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At T 1
3 and T 2

3 , state changes occur simultaneously in both T 1 and T 2. As-
sume that we consider the change in T 1 first. Because the current index is 0,
we add c to Q. Now, Q becomes c, and lead becomes 1. Then we consider the
change in T 2. Since lead �= 2 and T 2

3 = first(q) = c, we remove c from Q. The
updated Q is ε and lead is 0. If we had considered the change in T 2 first, we
would have obtained the same result.

If the state changes in T 1 and T 2 do not match, as is the case for T 1
4 and

T 2
5 , both q and leading become ⊥.

The number of state changes

To determine the number of state changes that have happened, we extend states
with counters nr ch1 and nr ch2. Initially, both nr ch1 and nr ch2 are 0, and
whenever a state change occurs, i.e., Tm

i �= Tm
i−1 (m = 1, 2), nr chm is increased

by one. Thus, the number of state changes at T 1
i and T 2

i can be determined via
the values of nr ch1 and nr ch2, respectively.

4.2.2 Program model

Based on the Kripke structure, we define a program model over which a temporal-
logic formula should hold. Given a program C and the valuations s and s′ of two
initial low-equivalent states, i.e., s = V (I) and s′ = V (I ′), we take the parallel
composition of C and its copy C ′. In this model, the valuation of C || C ′ can be
considered as the product of the two separate valuations s and s′, ensuring that
variables from the two program copies are disjoint, and thus variable updates
are done locally, i.e., not affecting the memory of the other program copy. We
define elements of the program model as follows.

Composed states. A state of a composed trace is of the form (〈C1 || C2, (s1, s2)〉,
〈C3 || C4, (s3, s4)〉, χ), where 〈C3 || C4, (s3, s4)〉 remembers the old state (via
the memorizing transition relation defined in Definition 4.1), and χ is extra
information, as discussed above, of the form (nr ch1,nr ch2,Q, lead). We de-
fine accessor functions conf1, conf2, and extra to extract (〈C1, s1〉, 〈C3, s3〉),
(〈C2, s2〉, 〈C4, s4〉), and χ, respectively.

Thus, in this model, the two original program copies are distinguished, and
the updates of program copies are done locally. Therefore, if T is a trace
of the composed model, we can decompose it into two individual traces by
functions Π1 and Π2, respectively, defined as Πm = map(confm). Thus, let
Ti = (〈C1 || C2, (s1, s2)〉, 〈C3 || C4, (s3, s4)〉, χ) be a state of the composed trace,
then (Π1(T ))i = (〈C1, s1〉, 〈C3, s3〉) and (Π2(T ))i = (〈C2, s2〉, 〈C4, s4〉).
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lead = 2 c = first(Q) nr ch1′ = nr ch1 + 1 Q′ = remove(Q) lead ′ = 1

(nr ch1,nr ch2,Q, lead) c→ (nr ch1′,nr ch2′,Q′, lead ′)

lead ∈ {0, 1} lead ′ = 1 nr ch1′ = nr ch1 + 1 Q′ = add(Q, c)
(nr ch1,nr ch2,Q, lead) c→ (nr ch1′,nr ch2′,Q′, lead ′)

lead �∈ {0, 1} c �= first(Q) nr ch1′ = nr ch1 + 1 Q′ = ⊥ lead ′ = ⊥
(nr ch1,nr ch2,Q, lead) c→ (nr ch1′,nr ch2′,Q′, lead ′)

Figure 4.1: Definition of →

The current state of the program copy m can be extracted by a function Γm,
defined as Γm = map(current) ◦Πm. Thus, (Γ1(T ))i = 〈C1, s1〉 and (Γ2(T ))i =
〈C2, s2〉. Finally, extra(Ti)(x) denotes the value of the extra information x at
Ti, for x ∈ {nr ch1,nr ch2,Q, lead}.
Transition relation. The transition relation →χ is defined as the compo-
sition of a relation on the operational semantics and a relation on the extra
information. More precisely, the first component is the memorizing transition
relation →m (cf. Definition 4.1), derived from the transition relation induced
by the operational semantics of a program executed under a scheduler δ. The
second component is a relation → ⊆ χ × Conf × χ that describes how the
extra information evolves, following the rules in Figure 4.1. Notice that → is
parametric on the concrete equality relation used. Concretely, →χ is defined
by rules such as:

(〈C1 || C2, (s1, s2)〉, c2) →m (〈C ′
1 || C2, (s

′
1, s2)〉, 〈C1 || C2, (s1, s2)〉) χ

〈C′
1,s

′
1〉→ χ′

(〈C1 || C2, (s1, s2)〉, c2, χ) →χ (〈C ′
1 || C2, (s

′
1, s2)〉, 〈C1 || C2, (s1, s2)〉, χ′)

Rules for when C1 terminates, i.e., 〈C1, s1〉 → 〈ε, s1〉, and the symmetric
counterparts for C2 are defined similarly.

Notice that above, we studied stuttering equivalence in a generic way, where
two traces could make a state change simultaneously. However, in our self-
composed program model, in every step, either C or C ′, but not both, is able
to make a transition. Therefore, for any trace T , state changes do not happen
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simultaneously in both Π1(T ) and Π2(T ). This also means that it never happens
that in one step, both add and remove are applied simultaneously on the queue.

Atomic propositions and their valuation. Next, we define atomic propo-
sitions of our program model, together with their valuation. Notice that their
valuation is parametric on the concrete equality relation used. Below, when
characterizing SSOD, we instantiate this in different ways, i.e., to define stutter-
ing equivalence on traces of each low variable, and on traces of all low variables,
respectively.

For each m = 1, 2, we define the following atomic propositions:

• first changem denotes that a state change occurs for the first time in the
program copy m.

• second changem denotes that a state change occurs in the program copy
m, while the program copy 3−m has already made this change.

• nr chm < nr ch3−m denotes that the number of state changes made by
the program copy m is less than the total number of state changes made
by the program copy 3−m.

The valuation function λ for these atomic propositions is defined as follows. Let
c denote a state of the composed trace.

first changem ∈ λ(c) ⇔ current(confm(c)) �= old(confm(c)) and

extra(c)(lead) = m or extra(c)(lead) = 0

second changem ∈ λ(c) ⇔ current(confm(c)) �= old(confm(c)) and

extra(c)(lead) = 3−m and

current(confm(c)) = first(extra(c)(Q))

nr chm < nr ch3−m ∈ λ(c) ⇔ extra(c)(nr chm) < extra(c)(nr ch3−m)

Program model. Using the above definitions, we define a program model,
encoding the behavior of a self-composed program under a scheduler δ. The
temporal-logic characterizations will be expressed over this model.

Definition 4.2 (Program model) Given a scheduler δ, let C be a program,
and s1 and s2 be two low-equivalent variable valuations. The program model
Mδ

C,s1,s2
is defined as (Σ, →χ , AP, λ, I) where:
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• Σ denotes the set of all states, including the extra information,

• I = {〈C || C ′, (s1, s2)〉} is the initial state of the composed trace.

• Other components have been defined before.

Now, we state a useful property of the program model that is used below to
prove correctness of the characterizations. The property states that the atomic
proposition second changem only holds if in an earlier state, first change3−m

was true. Intuitively, a state change can only be considered as a second-time
change, if the same change has occurred before. Formally, this is expressed as
follows.

Lemma 1

Tj |= second changem ⇒ ∃i. i < j. Ti |= first change3−m.

Proof: This follows directly from the construction of the queue and the
valuation of the corresponding atomic propositions. �

4.3 Logical characterization of stuttering equiv-
alence and SSOD

4.3.1 LTL and CTL

For convenience, we give a brief overview of those parts of LTL and CTL that
are needed for the characterization below. For more details, we refer to [51].

LTL stands for linear time temporal logic. Its connectives allow us to refer
to the future. It models time as a sequence of states, extending infinitely into
the future. Let AP denote a set of Boolean-valued atomic propositions.

Definition 4.3 (LTL syntax) Given an atomic proposition a ∈ AP, a for-
mula φ in LTL is defined as follows,

φ ::= a | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ→ φ′ | Gφ | φ Uφ′.

A state satisfies an LTL formula φ if all execution traces starting in that
given state satisfy φ. Thus, LTL implicitly quantifies universally over all traces.
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The connective G is called ‘Globally ’, while U is called ‘Until ’. The formula Gφ
holds on a trace if φ holds in every state along that trace. The formula φ Uφ′

holds on a trace if (1) φ holds continuously until φ′ holds, and (2) φ′ holds in
some future state.

The semantics of LTL is defined w.r.t. a program model M.

Definition 4.4 (LTL semantics) Let M be a program model, c a state, T an
execution trace of M, and φ an LTL formula. We write Mc |= φ, i.e., Mc

satisfies a formula φ, if for every trace T of M starting in c, we have T |= φ.

The satisfaction relation T |= φ, where φ is among {¬φ, φ ∧ φ′, φ ∨ φ′, φ →
φ′}, is defined as the standard satisfaction relation between the state c and the
formula, i.e., c |= φ. T |= a iff a ∈ AP(c), where AP(c) is the set of atomic
propositions of AP that are valid in c. T |= Gφ iff ∀i ≥ 0, T�i |= φ. T |= φUφ′

iff ∃k ≥ 0. T�k |= φ′ and ∀0 ≤ i < k, T�i |= φ.

CTL is a branching time logic. It models time as a tree-like structure.

Definition 4.5 (CTL syntax) Given an atomic proposition a ∈ AP , a for-
mula φ in CTL is defined as follows,

φ ::= a | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ→ φ′ |
AG φ | EG φ | A[φ U φ′] | E[φ U φ′].

CTL allows us to quantify explicitly over traces. Quantifiers A and E denote
‘all traces ’ and ‘exists a trace’, respectively. Notice that every temporal operator
(G, U) has to be associated with a unique path quantifier (A, E). Intuitively,
a formula Eψ, where ψ = G φ or ψ = φ U φ′, expresses that there exists an
execution trace for which the formula ψ holds, while Aψ expresses that ψ holds
for all traces.

The semantics of CTL is also defined w.r.t. a program model M.

Definition 4.6 (CTL semantics) Let M be a program model, c a state, T an
execution path of M, and φ a CTL formula. The satisfaction relation Mc |= φ
is defined as usual for a,¬φ, φ∧ φ′, φ∨ φ′, φ→ φ′, i.e., the satisfaction relation
between the state c and the formula: c |= φ. Mc |= Eψ, where ψ = Gφ or
ψ = φ U φ′, iff ∃T. c ⇓ T ∧ T |= ψ (for T |= ψ, refer to Definition 4.4).
Mc |= Aψ iff ∀T. c ⇓ T ⇒ T |= ψ.
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4.3.2 Characterization of stuttering equivalence

Based on the characteristics of stuttering equivalence and the program model
above, the stuttering equivalence property between two component traces is
characterized by the following LTL formula φ, that holds on a composed trace.

φ = G
( ∧

m∈{1,2}
first changem ⇒ nr ch3−m < nr chm U second change3−m

)
.

This formula expresses the characteristics of stuttering equivalence: any
state change occurring in one component trace will occur later in the other
component trace; and in between these changes, the number of state changes at
intermediate states in the latter trace is strictly smaller than in the first.

We prove formally that φ characterizes stuttering equivalence precisely.

Theorem 4.1 Let T be a composed trace that can be decomposed into T 1 and
T 2 with T 1

0 = T 2
0 , then T

1 ∼ T 2 ⇔ T |= φ.

Proof: Case 1: T 1 ∼ T 2 ⇒ T |= φ
Following the LTL semantics, we have to show the following:

∀i. ∀m ∈ {1, 2}. Ti |= first changem ⇒
∃j. Tj |= second change3−m∧

(∀r. i ≤ r < j. Tr |= nr ch3−m < nr chm)

Suppose without loss of generality that at an index i, a state change occurs
first in trace T 1, thus T 1

i−1 �= T 1
i . Since T 1 ∼ T 2, there exists a j such that

T 1 ∼i,j T
2.

Thus, there are two sequences 0 = k0 < k1 < k2 < . . . < kn = i + 1 and
0 = g0 < g1 < g2 < . . . < gn = j + 1 (for some n ≥ 0) such that for each
0 ≤ p < n:

T 1
kp

= T 1
kp+1 = · · · = T 1

kp+1−1 = T 2
gp = T 2

gp+1 = · · · = T 2
gp+1−1.

If we partition T 1�i and T
2�j in such a way that states in two adjacent blocks

are different, then it is easy to see that the total number of state changes at
states in the pth block is p.

Since T 1
i−1 �= T 1

i , then kn−1 = i. Thus, T 1
i = T 1

kn−1
= T 2

gn−1
, and also

T 1
i−1 = T 1

kn−1−1 = T 2
gn−1−1. Thus, the same change must occur second at T 2

gn−1

in T 2.
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Besides, we show that at all intermediate states, the number of changes in
the first trace is greater than the number of changes in the second trace. This
follows directly, since for any r such that i ≤ r < gn−1, T

1
r is in the qth block,

with q ≥ n − 1, while T 2
r is in q′th block with q′ < n − 1, thus the number of

changes at T 1
r is q, the number of changes at T 2

r is q′ and q > q′.

Case 2: T |= φ⇒ T 1 ∼ T 2

To show T 1 ∼ T 2, it is sufficient to show ∀i. ∃j. T 1 ∼i,j T
2, and vice versa.

W.l.o.g. we show the first conjunct, by induction on i.

Base case i = 0: Take j = 0. It follows immediately that T 1 ∼0,0 T
2.

Induction step:
Assume that T 1 ∼i,j T 2. We have to show that ∃h. T 1 ∼i+1,h T 2. If

T 1
i = T 1

i+1, we take h = j, and we are done. If T 1
i �= T 1

i+1, there are two cases.

Case 2.1: i ≤ j
Because T 1 ∼i,j T

2, there are two sequences 0 = k0 < k1 < k2 < . . . < kn =
i + 1 and 0 = g0 < g1 < g2 < . . . < gn = j + 1 (for some n ≥ 0) such that for
each 0 ≤ p < n:

T 1
kp

= T 1
kp+1 = · · · = T 1

kp+1−1 = T 2
gp = T 2

gp+1 = · · · = T 2
gp+1−1.

In this case, the state change T 1
i �= T 1

i+1 occurs first in T 1. Since φ holds, there
exists an h (h ≥ j + 1) such that T 1

i+1 = T 2
h �= T 2

h−1.
If h = j + 1, it is trivial that T 1 ∼i+1,h T

2.
If h > j + 1, we prove that for all r such that j ≤ r < h, T 2

j = T 2
r . We

prove this by contradiction. Assume that there exists a state change that occurs
between the indexes j and h in trace T 2 (different from the change occurring in
h), i.e., at index r′, j+1 ≤ r′ < h. This is the nth state change in T 2. Because φ
holds, the same state change has to also occur in trace T 1, and the total number
of state changes at T 1

r′ must be strictly smaller than the total number of state
changes at T 2

r′ . However, the total number of state changes at T 1
r′ is ≥ n, thus

we have a contradiction.
Therefore, we can conclude that T 2

j = T 2
j+1 = · · · = T 2

h−1. Choose kn+1 =
i+ 2, gn+1 = h+ 1, kn = i+ 1 and gn = h such that for each 0 ≤ p < n+ 1:

T 1
kp

= T 1
kp+1 = · · · = T 1

kp+1−1 = T 2
gp = T 2

gp+1 = · · · = T 2
gp+1−1.

Thus T 1 ∼i+1,h T
2.

Case 2.2: i > j
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In this case, the change T 1
i �= T 1

i+1 can be either a first change or a second
change.

If it is a first change, by a similar argument, we can conclude that there
exists a h such that T 1 ∼i+1,h T

2.

If it is a second change, according to Theorem 1, there must be a first change
in T 2 that matches with this change. We assume that the first change occurs
at T 2

h where h > j.

If h = j + 1, we are done.

If h > j+1, we prove that for all r such that j ≤ r < h, T 2
j = T 2

r . We prove
this by contradiction. Assume that a state change occurs between the indexes
j and h in trace T 2 (different from the change occurring in h), i.e., at index
r′, j + 1 ≤ r′ < h. Because φ holds, the same state change will also occur in
trace T 1. However, this change must occur after the change at state T 1

i , and
this is a contradiction, since φ holds.

Thus, T 1 ∼i+1,h T
2. �

4.3.3 Temporal-logic characterization of SSOD

Based on the results above, this section defines a temporal-logic formula char-
acterizing SSOD. The formula consists of two parts: one that expresses stut-
tering equivalence between traces of each low variable individually, and one
that expresses stuttering equivalence between traces of all low variables. Both
are instantiations of the formula characterizing stuttering equivalence defined
above.

Atomic propositions. To support the characterization of stuttering equiv-
alence in different ways, we define different atomic propositions. To characterize
stuttering equivalence over traces of each low variable, we use atomic proposi-
tions first changeml , second changeml , and nr chl

m < nr ch3−m
l for each l ∈ L.

To characterize stuttering equivalence over traces of all low variables, we use
atomic propositions first changemL , second changemL , and nr chL

m < nr ch3−m
L .

The formal definitions of these atomic propositions are defined in the previ-
ous section, where equality is instantiated as =l and =L, respectively.

Logic characterization of SSOD. A program C is observationally deter-
ministic under a scheduler δ, iff for any two initial low-equivalent valuations s1
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and s2, the following formula holds on traces of Mδ
C,s1,s2

.(∧
l∈L

φl

)
∧ φL, where

φl = G
( ∧

m∈{1,2}
first changeml ⇒

nr chl
3−m < nr chm

l U second change3−m
l

)
φL = AG

( ∧
m∈{1,2}

first changemL ⇒

E(nr chL
3−m < nr chm

L U second change3−m
L )

)
Notice that φl is an LTL and φL a CTL formula.

For a program with N low variables, we have N + 1 verification tasks: N
tasks relate to traces of each low variable, and one task relates to traces of all
low variable. For each task, we instantiate the extra information χ and the
equality relation differently.

Theorem 4.2 Given program C, and two low-equivalent valuations s1 and s2,
C is observationally deterministic under δ iff

Mδ
C,s1,s2 |=

(∧
l∈L

φl

)
∧ φL.

Proof: In the model of a self-composed program, the variables of the two
program copies are disjoint, and the updates of each program copy are done
locally, thus the stuttering equivalent property of the two component traces are
unchanged as if they are produced from the executions of C starting in two
initial valuations s1 and s2 separately, without composition.

Case 1: SSOD-1 ⇔ Mδ
C,s1,s2

|= ∧
l∈L φl

In Theorem 4.1, we show a temporal-logic formula that characterizes stut-
tering equivalence between the two component traces. Using Theorem 4.1, in-
stantiated with the atomic propositions defined above, it is easy to see that
SSOD-1 is characterized exactly by the formula

(∧
l∈L φl

)
.

Case 2: SSOD-2 ⇔ Mδ
C,s1,s2

|= φL

Case 2.1 SSOD-2 ⇒ Mδ
C,s1,s2

|= φL
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The condition SSOD-2 says that for any trace starting in s1, there exists
a trace starting in s2 such that these two traces are low stuttering equivalent.
It means that in a self-composed model, with respect to any low change in
a component trace, there always exists a composed trace such that there is a
match in the other component trace. Following the first case in the proof of
Theorem 4.1, instantiated with the atomic propositions defined in 4.2.2, we can
conclude that φL holds.

Case 2.2: Mδ
C,s1,s2

|= φL ⇒ SSOD-2

Consider Mδ
C,s1,s2

. Any path T of the model can be decomposed into Tm

and T 3−m (m ∈ {1, 2}). To satisfy SSOD-2, it is sufficient to show that for any
given path T 1, for any i, there always exists a path T 2 such that T 2�i = T 1�i

(T 1 and T 2 have the same prefix) and ∃j. T1m |L ∼i,j T2
3−m |L , and similarly

for T13−m |L . W.l.o.g. we show the first conjunct, by induction on i.

Base case i = 0: Take j = 0, then T1m |L ∼0,0 T2
3−m |L , for any T 2.

Induction step: Assume that T1m |L ∼i,j T1
3−m |L . We have to show that

∃T 2. T 2�i+1 = T 1�i+1, and ∃h. T1m |L ∼i+1,h T2
3−m |L .

If T1mi |L = T1mi+1 |L , we take T 2 = T 1 and h = j, we are done.

If T1mi |L �= T1mi+1 |L , there are two cases.

Case 2.2.1: It is a first change

Since φL holds, there exists a trace T 2 such that T 2�i+1 = T 1�i+1, and
there also exists an h (h ≥ i + 1) such that T1mi+1 |L = T23−m

h |L �= T23−m
h−1 |L .

Due to the construction of the queue and the definitions of atomic propositions,
T1m |L and T2m−3 |L must be stuttering equivalent up to i + 1 and h. If they
are not, a contradiction occurs. According to φL, the total number of changes
at T23−m

r (i + 1 ≤ r < h) must be strictly smaller than the total number of
changes at T1mr . Assume that at T23−m

r′ (i+1 < r′ < h), there is a change that
have not occurred in T1m�i+1. According to φL, the total number of changes
at T1mr′ must be strictly smaller than the total number of changes at T23−m

r′ ,
thus we have a contradiction.

Case 2.2.2: It is a second change

Follow the same argument in the proof of Theorem 4.1 — instantiated with
the atomic propositions defined above — on trace T 1, we are done. �
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4.4 Conclusions

This chapter discussed how an observational determinism property can be ver-
ified via a logic-based verification approach. Implementing the idea of self-
composition, SSOD properties over traces of the executions of C from two initial
states are reduced to a logic property over traces of a single execution of the
composed program C||C ′, where C ′ is a copy of C. This approach has the advan-
tage that we can reuse existing standard verification tools to prove or disprove
information flow properties.

A disadvantage of the logic-based verification approaches is that the program
model is often very complex; and thus, they are not very feasible to verify large
systems. Therefore, the remainder of this part introduces another approach,
based on an algorithmic verification technique, to verify information flow prop-
erties. The algorithmic method has a less complex program model; and thus, it
is often more practical for real applications.



Chapter 5

Algorithmic Verification

5.1 Introduction

Developing a logic-based verification technique has the advantage that we can
use an existing model checker to verify the information flow property. However,
since the program model for the logical characterization is rather complex, it
is difficult to handle large state-space systems. Therefore, instead of relying on
existing model-checking tools, this chapter develops more efficient specialized
verification methods for our confidentiality properties.

To verify scheduler-specific observational determinism (SSOD), a property
that characterizes secure information flow for non-deterministic multi-threaded
programs, we first extract a Kripke structure that models the program execu-
tion under the control of the given scheduler. Remember that SSOD imposes
two conditions: (SSOD-1) all individual public variables have to evolve deter-
ministically, and (SSOD-2) the relative ordering of updates of public variables
is coincidental, i.e., there always exists a matching trace.

We verify SSOD-1 by reducing it to the question whether all traces of each
public variable of a Kripke structure under the given scheduler are stuttering
equivalent. An algorithm to verify all-trace stuttering equivalence is imple-
mented by checking whether there exists a functional bisimulation between the
Kripke structure and a witness trace.

To verify SSOD-2, we first remove stuttering steps, and then determinize
two Kripke structures that model the program executions starting in two ini-
tial low-equivalent states. Next, we check whether these two deterministic and

65
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stuttering-free Kripke structures are strongly bisimilar. Our verification is based
on the well-known fact that in deterministic and stuttering-free Kripke struc-
tures, trace equivalence and strong bisimulation coincides [36].

Using a similar approach, scheduler-specific probabilistic observational de-
terminism (SSPOD), a confidentiality property for probabilistic multi-threaded
programs, can also be verified algorithmically. SSPOD requires two conditions:
(SSPOD-1) all traces of each low variable are stuttering equivalent with proba-
bility 1, and (SSPOD-2) for every trace considering all publicly visible variables,
there always exists a matching trace with equal probability.

To verify SSPOD, firstly, the executions of the probabilistic program under
the given scheduler are modeled as probabilistic Kripke structures. To check
SSPOD-1, we first remove all stuttering loops, except self-loops in final states,
i.e., we remove all traces that stutter forever and have probability 0. With a
stuttering-loop-free probabilistic Kripke structure, SSPOD-1 is satisfied if all
traces of each public variable are stuttering equivalent. The verification of
all-trace stuttering equivalence here is similar to the verification of SSOD-1.
SSPOD-2 is implemented by removing stuttering steps, thereby reducing this
property verification to checking of probabilistic-language equivalence [89, 35,
52].

The time complexity of the algorithms to verify SSOD-1 and SSPOD-1 is
linear in the size of the Kripke structure that models the program execution.
Due to the determinization step, the checking of SSOD-2 might be exponential
in the number of states of the Kripke structures. However, this worst-case
complexity is only reached in a very few cases [63]. The average complexity
is mostly far lower than exponential. The complexity of checking SSPOD-2 is
polynomial in the size of the Kripke structure.

This algorithmic approach gives a precise verification method for informa-
tion flow properties. The proposed algorithms are general, and also applicable
in other, non-security related contexts, since stuttering equivalence is a funda-
mental concept in the theory of concurrent and distributed systems.

Organization of the chapter. To present algorithms in a general way,
Section 5.2 first simplifies the notations of SSOD, and then Section 5.3 and
Section 5.4 give efficient specialized algorithms to verify its two conditions. The
algorithms to verify two conditions of SSPOD are presented in Section 5.5 and
Section 5.6, respectively. Section 5.7 discusses related work, while Section 5.8
draws conclusions.
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Origins of the chapter. The algorithms to verify SSOD were published
in the Journal of Computer Security (JCS) [69]. The algorithms to verify SS-
POD were published in the proceedings of the 5th International Conference on
Engineering Secure Software and Systems (ESSoS’13) [68], and also in a corre-
sponding technical report [70].

5.2 Simplified SSOD

For the convenience, we remind two formalizations of SSOD-1 and SSOD-2.

SSOD-1 ∀T ∈ Trace(Aδ), T
′ ∈ Trace(A′

δ), l ∈ L. T |l ∼ T ′ |l

SSOD-2 ∀T ∈ Trace(Aδ). ∃T ′ ∈ Trace(A′
δ). T |L ∼ T ′ |L

As shown in Section 3.3, we can simplify SSOD by replacing SSOD-1 with
SSOD-1A. Basically, SSOD-1A requires that, given a Kripke structure Aδ that
corresponds to any initial state, after projecting on any l ∈ L, all traces are
stuttering equivalent.

SSOD-1A ∀l ∈ L. T, T ′ ∈ Trace(Aδ). T |l ∼ T ′ |l .

The replacement of SSOD-1 by SSOD-1A simplifies a lot the algorithms to
verify SSOD, in both time and space complexity. For instance, we do not need
to model two program executions starting in two different initial states, and
then combine these two Kripke structures together to verify SSOD-1.

To present algorithms in a general way, we simplify the notations of SSOD-
1A and SSOD-2. Let Aδ |l and Aδ |L represent the projections of Aδ on the
label sets l and L, respectively. Since {T |l | T ∈ Trace(Aδ)} = Trace(Aδ |l) and
{T |L | T ∈ Trace(Aδ)} = Trace(Aδ |L), properties SSOD-1A and SSOD-2 can
be easily reformulated over these Kripke structures, as follows.

SSOD-1K ∀l ∈ L. T, T ′ ∈ Trace(Aδ |l). T ∼ T ′,

SSOD-2K ∀T ∈ Trace(Aδ |L). ∃T ′ ∈ Trace(A′
δ |L). T ∼ T ′.

Thus, SSOD-1K requires that for each l ∈ L, all traces of Aδ |l are stuttering
equivalent, while SSOD-2K requires stuttering trace equivalence between Aδ |L
and A′

δ |L . Notice that the below algorithms work only on finite Kripke struc-
tures, i.e., we assume that data domains are finite, and schedulers use finite
memory.
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5.3 Verification of SSOD-1K

Given a program C, and a scheduler δ, SSOD-1K requires that after projecting
Aδ on any low variable l, all traces must be stuttering equivalent. To verify this,
we pick one arbitrary trace, and then ensure that all other traces are stuttering
equivalent to this trace.

5.3.1 Algorithm

Concretely, for each l ∈ L, we carry out the following steps. (Figures 5.1, and
5.2 on page 74 provide an elaborate illustration of these steps.)

Algorithm 1: SSOD-1K on l
1: Project Aδ on l, yielding Aδ |l .
2: Identify all divergent states of Aδ |l . A state c of A is divergent if

there exists a trace such that all states following c are equivalent to c.
3: Check whether all traces of Aδ |l are stuttering equivalent by:

3.1: Choose a witness trace by:
3.1.1: Take an arbitrary lasso T of Aδ |l .
3.1.2: Remove stuttering steps and minimize T by strong bisimulation

reduction.
3.2: Check stuttering trace equivalence between Aδ |l and T by

checking if there exists a functional bisimulation between them.

Notice that the below algorithms that implement the above steps can be ap-
plied to any Kripke structure, i.e., independent of the scheduling policy. There-
fore, instead of the notation Aδ indicating a specific scheduler, we define these
algorithms over arbitrary Kripke structures A.

Step 1 is done by labeling every state of A with the value of l in that state.

Step 2 identifies all divergent states of a Kripke structure A. Before describ-
ing the algorithm for Step 2, we first derive two lemmas that follow directly
from the definition of a divergent state (given in Step 2 of Algorithm 1).

Lemma 2 If state c has a stuttering loop or a self-loop, c is divergent.

Lemma 3 Assume that state c has no self-loop or no stuttering loop. Then,
state c is divergent iff c has a divergent equivalent successor.
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Step 2 is implemented by exploring the state space of a Kripke structure A
and determining whether each reachable state is divergent or not. The state
space of A is explored in a breadth first search order (BFS). Let Pred(A, c)
and Succ(A, c) denote the set of all direct predecessors and successors of c,
respectively, i.e., Pred(A, c) = {b ∈ S| b → c} and Succ(A, c) = {d ∈ S|c → d}.
Let c ∼V c′ denote that c and c′ have the same valuation, i.e., V (c) = V (c′).

The algorithm to identify divergent states of A uses two queues: Q and
Non Diver Q , and two maps: Divergent and Checked . The queue Q stores the
set of frontier states of the exploration. Initially, Divergent indicates the number
of stuttering transitions of each state, i.e., Divergent [c] = 3 indicates that c
is equivalent to three of its successors. During the execution, the algorithm
changes the values in Divergent . When the algorithm terminates, the value of
Divergent [c] will indicate whether c is divergent or not, i.e., iff Divergent [c] = 0,
c is non-divergent. The queue Non Diver Q stores non-divergent states, i.e.,
all reachable state c such that Divergent [c] = 0. The map Checked indicates
whether a state has been checked or not, i.e., true or false.

Algorithm 2 works as follows. States of A are explored by a BFS (lines 6-12
in the algorithm). For each explored state c, the number of its direct stuttering
transitions is stored in Divergent [c] (line 11). If c has no outgoing stuttering
transition, i.e., Divergent [c] = 0, it is clear that c is non-divergent (line 12).

For any c such that Divergent [c] = 0, for each predecessor b of c such that c
is reached from b by a stuttering transition, the algorithm decreases the value
Divergent [b] by 1 (lines 13-18). The idea is to remove the number of non-
divergent equivalent successors out of the value Divergent [b] of a state b. Finally,
when Divergent is stable, the value Divergent [b] will indicate whether b is diver-
gent or not, i.e., if b has a divergent equivalent successor, i.e., Divergent [b] �= 0,
b is divergent (due to Lemma 3).

For example, assume that b is a direct predecessor of a non-divergent c, and
b has only one stuttering transition, which goes to c, i.e., Divergent [b] = 1.
Since c is non-divergent, according to Lemma 3, b is also non-divergent. Due to
the algorithm, the value of Divergent [b] is decreased by 1; and thus becomes 0,
which indicates that b is non-divergent.

Algorithm 2: Identify Divergent States (A)
// Initialization
1. for all states c ∈ S do
2. Checked [c] := false;
3. Divergent [c] := 0;
4. Q := empty queue(); enqueue(Q, init state);



70 Chapter 5. Algorithmic Verification

5. Non Diver Q := empty queue();
// Explore state space by BFS
6. enqueue(Q, init state); Checked [init state] := true;
7. while !empty(Q) do
8. current := dequeue(Q);
9. for all states c ∈ Succ(A, current) and ¬Checked [c] do
10. enqueue(Q, c); Checked [c] := true;

// Record the number of stuttering successors
11. Divergent [current ] := |{c ∈ Succ(A, current) | c ∼V current}|;
12. if Divergent [current ] = 0 then enqueue(Non Diver Q , current);
// Propagate non-divergence backwards
13. while !empty(Non Diver Q) do
14. current := dequeue(Non Diver Q);
15. for all states b ∈ Pred(A, current) do
16. if b ∼V current and Divergent [b] �= 0 then
17. Divergent [b] := Divergent [b]− 1;
18. if Divergent [b] = 0 then enqueue(Non Diver Q , b);
// Normalize divergence
19. for all states c ∈ S do
20. if Divergent [c] �= 0 then Divergent [c] := true
21. else Divergent [c] := false;

Theorem 5.1 Algorithm 2 identifies divergent states of a Kripke structure A.

Proof: Algorithm 2 always terminates, since A is finite. We show that the
second while loop correctly determines the divergent property of each state. We
first discuss its loop invariant Inv :

If a state c is divergent, Divergent [c] �= 0.

Initially, the value of Divergent [c] is the number of stuttering successors of
c. If c is divergent, according to the definition of divergent state, it must have
at least one stuttering successor, i.e., Divergent [c] �= 0. Thus, clearly, Inv holds
upon the first entry of the loop.

We show that the invariant is preserved by every iteration of the loop. As-
sume that Inv holds before the loop body. Consider a divergent state c. Due to
the invariant, Divergent [c] �= 0 holds before the execution of the loop.

Suppose that the value of Divergent [c] has been decreased by 1 in the itera-
tion, i.e., c has a stuttering successor d with Divergent [d] = 0.
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• Case c has a self-loop. In that case, c has at least two stuttering succes-
sors: one of them is itself. Therefore, the invariant is preserved after the
iteration, since Divergent [c] ≥ 2 before the iteration.

• Case c has a stuttering loop. States in a stuttering loop always have at
least one stuttering successor. Since they are connected in a loop, their
Divergent values never become 0. Since Divergent [d] = 0, d must be
outside the stuttering loop. Thus, c has at least two stuttering successors
before the iteration. The invariant is preserved.

• If c has no self-loop or no stuttering loop, according to Lemma 2, c must
have a divergent stuttering successor e. Since the invariant is true before
the iteration, Divergent [e] �= 0. Hence, d and e are not the same state.
Thus, c has at least two stuttering successors. The invariant is preserved.

Thus, Inv is a loop invariant. Therefore, Inv holds after termination: if c is
divergent, Divergent [c] �= 0. In other words, any c such that Divergent [c] = 0 is
non-divergent.

Additionally, we show the following post-condition: if the algorithm ter-
minates, and if c is non-divergent, then Divergent [c] = 0.

If c is non-divergent, all traces starting in c must pass a state that is not
equivalent to c. Let C denote the set of equivalent states that are reachable from
c only via stuttering transitions. To define C formally, we define the stuttering-
closure Stut(Q) of a subset Q ⊆ S,

Q0 = Q,
∀n ≥ 0. Qn+1 = {c′ ∈ S | ∃c ∈ Qn. c→ c′ ∧ c ∼V c′}.

We define Stut(Q) = ∪nQn. This is formally defined as an infinite union, but
it is actually a finite union; since there are at most a finite number of states in
S. Therefore, formally, C = Stut(c).

There must exist a state c′ ∈ C such that initially, Divergent [c′] = 0, i.e., c′

only connects to states outside C. Otherwise, a contradiction occurs: assume
that initially, ∀c′ ∈ C, Divergent [c′] �= 0, i.e., all states have at least a stuttering
successor. Since the set C is finite, if all states of C have stuttering successors,
there must exist a stuttering loop inside C. Hence, c is divergent due to Lemma 2;
and this is a contradiction, since we assume that c is non-divergent.

Let D0 denote the set of states c′ ∈ C such that initially, Divergent [c′] = 0.
Notice that Algorithm 2 changes the Divergent value of states. Let D0 denote
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the set of states of C such that currently, their Divergent values are 0. Initially,
D0 = D0.

Consider the set of direct predecessors of D0. We claim that there must exist
a state c′′ in this set of predecessors such that initially, Divergent [c′′] is equal to
the number of its successors c′ with Divergent [c′] = 0, i.e, Divergent [c′′] = |{c′ ∈
Succ(A, c′′) | c′ ∼V c′′ ∧Divergent [c′] = 0}|. If not, the contradiction occurs by
the same argument, i.e., there exists a stuttering loop. Let D1 denote the set of
direct predecessors c′′ of D0 such that initially, Divergent [c′′] = 1. According to
the algorithm, the Divergent values of states in D1 are decreased by 1. Thus,
after a few iterations, the Divergent values of all states in D1 become 0, i.e.,
D0 = D0 ∪D1.

Therefore, by a similar argument, the Divergent values of other states, e.g.,
the predecessors of D0 with the Divergent value 2, also become 0; and so on.
The set D0 gradually grows, and at the termination, D0 = C. Therefore, when
the algorithm terminates, if c is non-divergent, Divergent [c] = 0. This is also
equivalent that if Divergent [c] �= 0, c is divergent.

Notice that the two queues Q and Non Diver Q ensure that each state and
each edge of A are processed at most once in each while loop. Thus, the time
complexity of Algorithm 2 is linear in the size of A. �

Step 3: Step 3.1.1 is implemented via a classical cycle-detection algorithm
based on depth-first search. The initial state of a lasso is also the initial state of
the Kripke structure. The algorithm essentially proceeds by picking arbitrary
next steps, and terminates when it hits a state that was picked before.

Algorithm 3: Lasso T of A
for all states c ∈ S do Visit [c] := false;
index := 0;
current := init state;
for (; ; ) do

T [index ] := current ; // Implement T as an array

index := index + 1;
if Visit [current ] = true then break;
Visit [current ] := true;
current := some state c ∈ Succ(A, current);

return(T , position of current in T );

In Algorithm 3, we use a map Visit to indicate the visited states of A, i.e.,
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Visit [current ] = true indicates that current has been visited before. Clearly,
Algorithm 3 returns a trace of A. Moreover, it always terminates, since A is
finite and there is a self-loop at every final state.

Step 3.1.2 is done via the standard strong bisimulation reduction [17]. For
example, the minimal form of a lasso abb(cb)ω is a(bc)ω. This minimal lasso
is called the witness trace. Except the final state, all states of the witness trace
are set to be non-divergent.

Step 3.2 checks stuttering trace equivalence between a Kripke structure A
and the witness trace T by checking if there exists a functional bisimulation
between them, i.e., a bisimulation that is a function, thus mapping each state
in A to a single state in T . This is done by exploring the state space of A
in a breadth-first search and building the mapping Map during exploration.
We name each state in T by a unique symbol u ∈ U , i.e., ui denotes Ti. Let
Succ(T, u) denote the successor of u on T .

We map the initial state of A to u0, i.e., Map[init state] = u0 (line 4 in
Algorithm 4). Each iteration of the algorithm examines the successors of the
state stored in the variable current (lines 6-8). Assume that Map[current ] is
u, consider a successor c ∈ Succ(A, current). The potential map of c is u if
current → c is a stuttering transition; otherwise, it is Succ(T, u) (line 9). The
algorithm returns false, i.e., continue = false, if (i) c and potential map have
different valuations, (ii) c and potential map have different divergent values, or
(iii) c has been checked before, but its mapped state is not potential map (line
10, 11, and 13).

If none of these cases occurs, and c was not checked before, c is added to Q,
and mapped to potential map (line 12). Basically, a state c of A is mapped to
u, i.e., Map[c] = u, iff the trace from the initial state to state c in A and the
prefix of T up to u are stuttering equivalent.

In the algorithm, final(A, c) denotes that c is a final state inA; and final(T, u)
denotes that u is the final state in T . Algorithm 4 also uses a queue Q of frontier
states. The termination of Algorithm 4 follows the termination of BFS over a
finite A.

Algorithm 4: All-Trace Stuttering Equivalence (A, T )
1. for all states c ∈ S do Map[c] := ⊥;
2. continue := true;
3. Q := empty queue(); enqueue(Q, init state);
4. Map[init state] := u0; // u0 is T0
5. while !empty(Q) ∧ continue do
6. current := dequeue(Q);
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Figure 5.1: Step 1 - Step 3.1 of Algorithm 1

7. u := Map[current ];
8. for all states c ∈ Succ(A, current) do
9. potential map := (c ∼V current) ? u : Succ(T, u);
10. case c �∼V potential map � continue := false;
11. [] Divergent [c] �= Divergent [potential map] �

continue := false ;
12. [] Map[c] = ⊥ � enqueue(Q, c); Map[c] := potential map;
13. [] Map[c] �= potential map � continue := false;
14. return continue;

Example 5.1 Figure 5.1 illustrates Step 1 - Step 3.1 on a Kripke structure
A consisting of 10 states, numbered from 0 to 9. Step 1 shows a projection of
A on a low variable l where the symbols a, b, c etc. denote state contents,
i.e., states with the same value of l are represented by the same symbol. Step 2
identifies divergent states by ∗. Step 3.1 takes an arbitrary trace of A, and then
minimizes it. Each state of the witness trace T is denoted by a unique symbol
ui. Figure 5.2 illustrates Step 3.2. Initially, all states of A are mapped to a
special symbol ⊥ that indicates unchecked states. To keep states readable, we
skip the valuation. Next, state 0 is enqueued, and mapped to u0. In the next
step, the algorithm examines all unchecked successors of state 0, i.e., states 1,
2, 3. Each of them follows a non-stuttering step, thus their potential maps are
all u1. State 1 is divergent while potential map is not, thus, continue = false.
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Figure 5.2: Step 3.2 of Algorithm 1 (i.e., Algorithm 4)

SSOD-1K fails, since there exists a trace that stutters in state 1 forever, and
thus, A and T are not stuttering trace equivalent. The algorithm terminates.

As a first step towards proving correctness, we prove that Algorithm 4 en-
sures the following loop invariant.

Theorem 5.2 Algorithm 4 preserves the following loop invariant Inv:
If continue, then ∀c ∈ S such that Map[c] = u, the trace from init state to c
and the prefix of T up to u are stuttering equivalent, and if ¬continue, then
there exists a trace of A that is not stuttering equivalent to T .

Proof: Clearly, Inv holds upon the first entry of the loop, since initially,
continue holds, and only init state is mapped to the initial state of T , i.e., u0.

We show that the invariant is preserved by every iteration of the loop. As-
sume that Stm holds before the loop body. If continue does not hold, then the
loop is not executed, and the algorithm ends. The invariant is preserved.

Otherwise, continue holds. The invariant before the loop body states that
the trace from init state to current and the prefix of T up to u are stuttering
equivalent. Now consider a successor c of current . We distinguish the following
cases:

Case c �∼V u and c �∼V Succ(T, u). Let potential map denote the mapping can-
didate of c. It is u if c ∼V current ; otherwise, it is Succ(T, u). If c �∼V u
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and c �∼V Succ(T, u), then c �∼V potential map. Thus, continue becomes
false. The invariant is preserved, since any trace that goes from current
to c is not stuttering equivalent to T .

Case c ∼V u or c ∼V Succ(T, u). Thus, c ∼V potential map. Now, we con-
sider the following cases:

Case Divergent [c] �= Divergent [potential map]. If c is a divergent state of
A, then there must be a trace that stutters in c forever, while T can
evolve from potential map to a state with a different valuation (or
vice versa). Thus, these two traces are not stuttering equivalent.
Hence, continue becomes false; and the invariant is preserved.

Case Divergent [c] = Divergent [potential map].

Case c is unchecked. Thus, Map[c] = ⊥. State c is added to
Q, and becomes a frontier state. Moreover, it is mapped to
potential map. It is easy to see that the trace from init state to
c and the prefix of T up to potential map are stuttering equiva-
lent. Hence, the invariant is preserved.

Case c is checked before. Thus, Map[c] �= ⊥.

Case Map[c] = potential map. State c has been explored be-
fore; the algorithm does not explore it further. Since continue
and Map are not updated, the invariant is preserved.

Case Map[c] �= potential map. Thus, continue becomes false.
The invariant is preserved, since there exist two traces that
both lead to c and in these two traces, c is mapped to two
different states of T ; thus, one of these two trace is not stut-
tering equivalent to T .

�

Theorem 5.3 Algorithm 4 returns true iff there exists a functional bisimula-
tion between A and T .

Proof: If Algorithm 4 returns false, it follows directly from the invariant that
no functional bisimulation exists. If it returns true, due to the loop invariant,
we can conclude that for any trace of A, e.g., T1, there exists a prefix of the
witness T that is stuttering equivalent to T1. We show that T1 is actually
stuttering equivalent to the whole T .
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Case T1 ends with a final state c. Assume that Algorithm 4 maps c to
potential map. Since the algorithm is divergent-sensitive, and in the wit-
ness trace T , the only divergent state is the final state, thus potential map
is also the final state of T . Therefore, T1 and T are stuttering equivalent.

Case T1 ends with a non-stuttering loop that starts and ends in
state c. Thus, state c is investigated twice, and in the second visit, its
corresponding mapped state (of T ) must be the same as its mapped state
in the first visit; otherwise, the algorithm returned false. Hence, the c’s
mapped state is also the start and end of a loop that terminates T . Thus,
T1 and T are stuttering equivalent.

�
Notice that our definition of scheduler-independent observational determin-

ism can also be verified via Algorithm 1. First, we project both Aδ and A′
δ

(modeling the program executions starting in two initial low-equivalent states I
and I ′) on the set L, yielding Aδ |L and A′

δ |L . Next, we combine Aδ |L and A′
δ |L

together, yielding A+
δ |L , and then apply Step 2 and Step 3 of Algorithm 1.

5.3.2 Overall complexity

Step 1 labels every state of A by the value of l in that state. This is done in
time complexity O(n), where n is the number of states of A. Step 2 is based on
BFS, thus its time complexity is O(n+m), where m is the number of transitions
of A. The time complexity of Step 3.1 to find a witness trace is O(m). The core
of Step 3.2 is also BFS, whose running time is O(n+m). Therefore, for a single
low variable l, the total time complexity of the verification of SSOD-1K is linear
in the size of A, i.e., O(n+m), and for any initial state, the total complexity of
the verification (for all l ∈ L) is |L|O(n+m). If we put restrictions on the initial
inputs, i.e., the number of initial states is finite, the verification of SSOD-1K is
feasible in practice (see Chapter 7).

5.4 Verification of SSOD-2K

SSOD-2K requires that, given two Kripke structures Aδ and A′
δ that model the

executions of a program C from any two initial low-equivalent states I and I ′,
if we project them on the set of low variables L, Aδ |L and A′

δ |L are stuttering
trace equivalent.
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To verify SSOD-2, our algorithm first transforms Kripke structures into two
equivalent ones, without stuttering steps, and then determinizes them1. It is
well-known that, for deterministic and stuttering-free Kripke structures, trace
equivalence and strong bisimilarity coincide [36].

5.4.1 Algorithm

We verify SSOD-2K by combining several existing algorithms.

Algorithm 5: SSOD-2K
1: Project both Aδ and A′

δ (modeling the executions starting in I and I ′)
on the set L, yielding Aδ |L and A′

δ |L .
2: Remove all stuttering steps from Aδ |L and A′

δ |L , yielding stuttering-free

Kripke structures Asf
δ |L and A′sf

δ |L .
3: Re-establish self-loops for final states of Asf

δ |L and A′sf
δ |L .

4: Determinize Asf
δ |L and A′sf

δ |L , yielding deterministic stuttering-free
Rδ |L and R′

δ |L .
5: Combine Rδ |L and R′

δ |L , yielding R+
δ |L , and then compute all bisimila-

rity equivalence classes of R+
δ |L .

6: Check if I and I ′ are in the same bisimilarity equivalence class.

Step 1 is done by labeling every state of a Kripke structure with the set of
low values L in that state. To remove the stuttering steps in Step 2, we compute
the stuttering closure of each state, using the standard all-pair shortest path
algorithm [33], and then collapse these components into a single state. To ensure
that the transition relation remains non-blocking, Step 3 re-establishes the self-
loops for final states. Notice that A and Asf are stuttering trace equivalent,
since traces of Asf are traces of A, but all stuttering steps in traces have been
removed.

The determinization of a Kripke structure in Step 4 is obtained via the
well-known subset construction. Due to the property of determinization of finite
automata, Asf and R are trace equivalent. Notice that the determinization is
based on low events, i.e., operations of changing the values of low variables.
Thus, a state of R is a group of states in the original Kripke structure A that
are reached via the same low operation. Therefore, states of R have the same
label as their inside component states.

1We refer to the determinization concept in automata theory [44].
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Step 5: Computing bisimilarity equivalence classes. For deterministic
stuttering-free Kripke structures, trace equivalence and strong bisimilarity coin-
cide. To verify strong bisimilarity of R and R′, we first take the union of state
spaces of the two Kripke structures, denoted R+, and use the classic algorithm
for computing bisimilarity by Paige and Tarjan [71]. This is a standard algo-
rithm, and readers can refer to [71] for a detailed description of the algorithm.
However, since this step strongly relates to the chapter where we synthesize
attacks for insecure programs, we represent briefly the algorithm’s main idea.

The algorithm for computing bisimilarity equivalence classes exploits the
well-known partition-refinement technique [71]. The main idea of this technique
is to partition the state space into disjoint blocks of states, and repeatedly refine
this partition: whenever we find that states of a block are not equivalent, we
split the block into separate blocks. If the partition is stable, i.e., it is not
necessary to refine it further, we terminate.

A partition P of S is a collection {Qi}i∈I of nonempty subsets of S such
that

⋃
iQi∈I = S and for any i′ �= i : Qi′ ∩Qi = ∅. The elements of a partition

are called blocks. Given a partition P, we say that another partition P ′ refines
P, if any block of P ′ is included in a block of P. We define P-equivalence as
follows: c ∼P c′ ⇔ ∃Q ∈ P. c ∈ Q ∧ c′ ∈ Q, i.e., intuitively, c and c′ are in the
same block.

The initial partition P0 is constructed by categorizing states with the same
valuation into blocks, i.e., c ∼P0

c′ ⇔ V (c) = V (c′). In the refinement step, we
split a block Q into two disjoint subblocks, one collects all states that are able
to reach another block Q′, while the other collects all states that cannot reach
Q′. In this case, we call Q′ a splitter of Q. Partition P is stable w.r.t. a block
Q′ if there is no block Q ∈ P such that Q′ is a splitter of Q. P is stable if it is
stable w.r.t. all its blocks.

Step 6: Inclusion check. Finally, we check if two initial states I and I ′ are
in the same bisimilarity equivalence class. This will indirectly answer whether
Rδ |L and R′

δ |L are bisimilar, i.e., they are bisimilar if two initial states fall into
the same block, otherwise they are not.

5.4.2 Overall complexity

The stuttering closures in Step 2 can be computed in O(n3) using the all-pair
shortest path algorithm. However, improved algorithms for doing so run in
O(n2.376) [32].
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The algorithm by Paige and Tarjan computes the partition corresponding
to strong bisimilarity in O(m · log n) [71]. Thus, the complexity of verifying
SSOD-2K is dominated by the determinization in Step 4, which is exponential
in the number of states. However, Melichar et al [63] shows that the exponen-
tial complexity of determinization is often reached in only the extreme cases.
The average complexity is mostly far lower than exponential. In [59], Lamperti
et al. introduce an algorithm called incremental subset construction for deter-
minizing a non-deterministic finite automata that is far more efficient than the
traditional determinization by subset construction. Therefore, we believe that
the verification of SSOD-2K is feasible in practice.

5.5 Verification of SSPOD-1

Following this algorithmic approach, this section discusses how the algorithms
to verify SSOD can be adapted to verify SSPOD, a secure information flow
property in the probabilistic context.

5.5.1 Algorithm

Given a program C, and a scheduler δ, SSPOD-1 requires that after projecting
Aδ on any low variable l, all traces that do not stutter forever in a non-final
stuttering loop must be stuttering equivalent with probability 1. Thus, the ver-
ification of SSPOD-1 can be done via the following algorithm. Concretely, for
each l ∈ L, we carry out the following steps.

Algorithm 6: SSPOD-1 on l
1: Project Aδ on l, yielding Aδ |l .
2: Remove all stuttering loops in Aδ |l .
3: Re-establish self-loops for final states of Aδ |l . This yields a

stuttering-loop free PKS, denoted Rδ |l .
4: Check whether all traces of Rδ |l are stuttering equivalent by:

4.1: Choose a witness trace by:
4.1.1: Take an arbitrary lasso T of Rδ |l .
4.1.2: Remove stuttering steps and minimize T by strong bisi-

mulation reduction.
4.2: Check stuttering trace equivalence between Rδ |l and T by

checking if there exists a functional bisimulation between them.
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We assume that data domains are finite, and schedulers use finite memory.
Thus, Algorithm 6 works only on finite fully probabilistic PKSs — all deter-
minism has been resolved by the scheduler — which can be viewed as Markov
chains.

Algorithm 6 works, since we transform the probabilistic SSPOD-1 property
into a possibilistic one. Key insight is that the probability of a trace that stutters
forever in a non-final stuttering loop is 0. Therefore, after removing all non-final
stuttering loops, it is sufficient to determine whether all traces are stuttering
equivalent. Notice that a stuttering loop is non-final if it contains at least a
state with an outgoing transition that can reach a non-equivalent state.

To perform Step 1, we label every state with the value of l in that state. To
remove the stuttering loops in Step 2, we use a classical algorithm for finding
strongly connected components w.r.t. stuttering steps [1], and collapse these
components into a single state. To ensure that the transition relation remains
non-blocking, Step 3 re-establishes self-loops for final states. Step 4.1.1 and
Step 4.1.2 are the same as the corresponding ones of Algorithm 1 to verify
SSOD-1K.

Step 4.2 checks stuttering trace equivalence between a PKS A and the
witness trace T by checking if there exists a functional bisimulation between
them. Similarly to the verification of SSOD-1K, this is done by exploring the
state space of A, and building the mapping Map during the exploration. The
main difference between the following algorithm (Algorithm 7) and Algorithm
4 is that in Algorithm 7, we do not check the divergent property of states, since
Step 2 of Algorithm 6 has removed all of them, except the final states. Thus,
in Algorithm 7, instead, we check whether a state is a final state or not.

Consider a state c and its potential map. The algorithm returns false, i.e.,
continue = false, if (i) c and potential map have different valuations, (ii) c is
a final state of A, while potential map is not the final state of T , or (iii) c has
been checked before, but its mapped state is not potential map. If none of these
cases occurs, and c was not checked before, c is added to Q, and mapped to
potential map.

Algorithm 7: All-Trace Stuttering Equivalence(A, T ) (SSPOD version)
for all states c ∈ S do Map[c] := ⊥;
continue := true;
Q := empty queue(); enqueue(Q, init state);
Map[init state] := u0; // u0 is T0
while !empty(Q) ∧ continue do
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current := dequeue(Q);
u := Map[current ];
for all states c ∈ Succ(A, current) do

potential map := (c ∼V current) ? u : Succ(T, u);
case c �∼V potential map � continue := false;

[] final(A, c) ∧ ¬final(T, potential map) � continue := false;
[] Map[c] = ⊥ � enqueue(Q, c);

Map[c] := potential map;
[] Map[c] �= potential map � continue := false;

return continue;

Example 5.2 Figure 5.3 illustrates Step 1 - Step 4.1 on a PKS A consisting
of 10 states. Step 1 projects A on a low variable l. Step 2 removes all stuttering
loops, while Step 3 re-establishes self-loops for final states. Step 4.1 takes an
arbitrary trace of A, and then minimizes it. Each state of the witness trace T is
denoted by a unique symbol ui. Figure 5.4 illustrates Step 4.2. Initially, all states
of A are mapped to a special symbol ⊥. Next, state 0 is enqueued, and mapped to
u0. Next, Algorithm 7 examines all unchecked successors of state 0, i.e., states
1, 2, 3. Each of them follows a non-stuttering step; thus their potential maps
are all u1. Since states 1, 2, and 3 have the same valuation as potential map,
i.e., b, they are all enqueued, and mapped to u1. Next, the successor of state
1, i.e., state 4, is considered. The transition 1 → 4 is non-stuttering; thus
potential map = u2. State 4 has the same valuation as potential map, but it is
a final state of A, while potential map is not the final state of T . Therefore,
continue = false. The PKS A and the witness trace T are not stuttering trace
equivalent, since there exists a trace that stutters in state 4 forever. Hence, the
algorithm terminates.

Before proving the correctness of Algorithm 7, we first discuss its loop in-
variant.

Theorem 5.4 Algorithm 7 preserves the following loop invariant:

If continue, then ∀c ∈ S such that Map[c] = u, the trace from init state to c
and the prefix of T up to u are stuttering equivalent, and if ¬continue, then
there exists a trace of A that is not stuttering equivalent to T .

Proof: The proof of this theorem and the one we gave for Theorem 5.2 on
page 75 are very much the same. However, instead of checking the divergent
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property as in the proof for Theorem 5.2, we check whether c is a final state
while potential map is not. That is:

Case final(A, c) ∧ ¬final(T, potential map). Thus, continue becomes false.
The invariant is preserved, since if c is a final state of A, then there must be a
trace that stutters in c forever, while T can make a step from potential map to
another state with a different valuation, due to the fact that T is stuttering-free.

Notice that in case c ∼V potential map, and c is not a final state while
potential map is, the check still continues, since the traces ofA are not stuttering-
free, and the trace from the initial state to c is still stuttering equivalent to T .
�

Theorem 5.5 Algorithm 7 returns true iff there exists a bisimulation between
a PKS A and T .

Proof: See the proof for Theorem 5.3 on page 76. �

5.5.2 Overall correctness

Step 1 only changes the state labels of a PKS. Thus, the probability space of the
PKS is unchanged. Hence, after projecting Aδ on l, we can reformulate SSPOD-
1 in terms of Aδ |l . Let (Ω,F ,Pδ,l) denote the probability space of Aδ |l . First,
we reformulate SSPOD-1, which talks about the traces of Aδ, in terms of the
traces of the projected Aδ,l

Theorem 5.6 For any l ∈ L, and for a set of traces X ∈ F that are closed
under stuttering equivalence, if Pδ,l[X] = 1 or Pδ,l[X] = 0, then SSPOD-1 holds.

Proof: Let T be a trace of Aδ, and let T |l denote the projection of T
on l. First, notice that {T |l | T ∈ Trace(Aδ)} = Trace(Aδ |l). Let X ⊆
Trace(Aδ) such that X is closed under stuttering equivalence w.r.t. l. Clearly,
also X ⊆ Trace(Aδ |l), and X is closed under stuttering equivalence. Moreover,
the probability space of Aδ is preserved under the projection on l. Thus, if for
any l, Pδ,l[X] = 1 or Pδ,l[X] = 0, then Pδ[X] = 1 or Pδ[X] = 0, respectively.
Thus, SSPOD-1 holds. �

The key step (Step 2) of Algorithm 6 is the reduction of a probabilistic
property to a non-probabilistic property, i.e., after removing all stuttering loops
— removing all sets of traces X such that X stutters forever, and Pδ,l[X] = 0 —
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if all traces of Aδ |l are stuttering equivalent, then Pδ,l[X] = 1. Thus, SSPOD-
1 holds. The correctness of this step follows from a result from Baier and
Kwiatkowska [14]:

whenever all fair traces of a PKS fulfill a certain property ϕ, then ϕ holds
with probability 1.

In our context, we define the fairness of traces w.r.t. non-stuttering transi-
tions. A non-stuttering transition is enabled in a state Ti iff there exists a finite
sequence of transitions from Ti that leads to Tj such that V (Tj) �= V (Ti). A non-
stuttering transition is said to be taken in a state Ti of T iff ∃j > 0. Ti �= Ti+j .
A trace is strongly fair w.r.t. non-stuttering transitions if given that a non-
stuttering transition is enabled infinitely often, it is taken infinitely often. Thus,
a trace that stutters in a non-final stuttering loop forever is unfair. Let Fair(A)
denote the set of fair traces of Trace(A). Applying the result from [14], we
obtain:

Theorem 5.7 Given a finite Aδ |l . Consider a set of traces X ∈ F that are
closed under stuttering equivalence, and do not stutter forever in a non-final
stuttering loop, if ∀T, T ′ ∈ Fair(Aδ |l). T ∼ T ′, then Pδ,l[X] = 1.

We show that after removing all stuttering loops, and re-establishing self-
loops for final states, the set of fair traces of A is preserved.

Theorem 5.8 Given a PKS A. Let R denote the PKS that is obtained af-
ter removing all stuttering loops, and re-establishing self-loops for final states,
Fair(A) = Trace(R).

Proof: Let Loop be a non-final stuttering loop of A. Since Loop is non-final,
it contains at least a state with an outgoing transition that leads to a non-
stuttering transition. From the definition of fair traces, any T that is trapped in
Loop forever is unfair. Hence, removing all stuttering loops, and re-establishing
self-loops for final states, preserve the set of fair traces of A. �

Combining these results, we obtain.

Theorem 5.9 For any l ∈ L, if all traces of Rδ |l are stuttering equivalent,
then SSPOD-1 holds.
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5.5.3 Overall complexity

Step 1 labels every state of A by the value of l in that state. This is done in time
complexity O(n), where n is the number of states of A. Step 2 uses an O(m)-
algorithm to find the strongly connected components, where m is the number
of transitions of A. The time complexity of Step 4.1 is also O(m). The core of
Step 4.2 is the BFS algorithm, whose running time is O(n+m). Therefore, for
a single low variable l, the total time complexity of the verification is linear in
the size of A, i.e., O(n +m), and for any initial state, the total complexity of
the verification of SSPOD-1 (for all l ∈ L) is |L| · O(n+m).

5.6 Verification of SSPOD-2

5.6.1 Algorithm

SSPOD-2 states that, given a program C, for any two initial low-equivalent
states I and I ′, if we project on the set of low variables L, the probabilistic
languages arising from the executions of I and I ′ should be the same. A number
of efficient algorithms for checking equivalence between probabilistic languages
have been developed, the classical ones in [27, 89], and the improved variants in
[35, 52]. However, none of the existing algorithms exactly fit our purposes, since
either they do not abstract from stuttering steps [89, 35, 52], or they consider
a different variation of probabilistic language inclusion [27].

Therefore, to verify SSPOD-2, our algorithm first transforms the PKS into an
equivalent one, without stuttering steps, and then we use an efficient algorithm
from Kiefer et al. [52] to check probabilistic-language equivalence. Concretely,
we carry out the following steps.

Algorithm 8: SSPOD-2

1: Project both Aδ and A′
δ on the set L, yielding Aδ |L and A′

δ |L .
2: Remove all stuttering steps from Aδ |L and A′

δ |L , yielding stuttering-
free PKSs Rδ |L and R′

δ |L .
3: Check the equivalence of the stuttering-free probabilistic languages

between Rδ |L and R′
δ |L , using Kiefer et al. [52].

Step 1 and Step 2 of this algorithm are just the same as the ones of Algo-
rithm 5 to verify SSOD-2K. To make this thesis self-contained, we present the
main idea of the algorithm to check the equivalence of stuttering-free proba-
bilistic languages in Step 3 [52]. The basic idea of this algorithm is based on a
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result from [74]:
Two probabilistic automata with a combined number of states n are equiv-
alent iff they have the same n-bounded language, i.e., each word of length at
most n is accepted with the same probability by both probabilistic automata,
where each word denotes a sequence of computational operations.

Thus, we can represent the n-bounded language of a PKS by a polynomial in
which each monomial presents an input word of the language, and the coefficient
of the monomial represents the weight of the word, i.e., the probability of the ex-
ecution of that sequence of operations. Two PKSs have the same probabilistic
language iff both polynomials yield the same value for any word that is cho-
sen independently and randomly. This method reduces a language equivalence
problem to a polynomial identity testing.

Following this algorithm, we extend the notion of a PKS with a non-empty
set of alphabet E , where each alphabet symbol σ ∈ E denotes a computation
operation that results in a state change. Let n denote the number of states of
a stuttering-free PKS R. We assign to each alphabet symbol σ ∈ E a transition
matrix M of size n× n, where M(σ)[i, j] is the probability that R moves from
state ci to state cj after executing σ. Let α denote an initial (row) vector of size
n, i.e., setting α = (1, 0, . . . , 0) to represent the initial state of R. To present
final states, we use n-dimensional (column) vectors η such that η[i] = 1 if ci is
a final state, and 0 otherwise.

The PKS R assigns each word w = σ1 · · ·σk a weight R(w), where R(w) =
α ·M(σ0) · · ·M(σk) · η. Two PKSs R and R′ over the same alphabet E are said
to be probabilistic-language equivalent iff R(w) = R′(w) for any word w ∈ E∗.

Given two PKSs R and R′, where n and n′ are their numbers of states,
respectively. Let x = {xσ,i : σ ∈ E , 0 ≤ i < n + n′} be a family of variables.
Each monomial xσ1,1xσ2,2 · · ·xσk,k is associated with a word w = σ1 · · ·σk of
length k ≤ n+ n′. Kiefer et al. represent the n+ n′-bounded language of R by
a polynomial P (R)(x), as follows.

P (R)(x) =

n+n′∑
k=0

∑
w∈Ek

R(w) · xσ1,1xσ2,2 · · ·xσk,k

The polynomial P (R′)(x) is defined similarly. Thus, P (R) ≡ P (R′) iff R and R′

are probabilistic-language equivalent [52].
To test the equivalence of P (R) and P (R′), the algorithm selects a value for

each variable xσi,i independently and uniformly at random from a set of rationals

of size K(n + n′) — K is a constant. If P (R) ≡ P (R′), then both polynomials
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will yield the same value. Otherwise, if P (R) �≡ P (R′), the polynomials will
yield different values with probability at least K−1

K . Notice that the following
algorithm is in a backward direction, starting with the final state vector η and
pre-multiplying by transition matrices. Readers can refer to [52] for the proof
of correctness.

Algorithm 9: Probabilistic Language Equivalence (R,R′)
if α · η �= α′ · η′ then

return: R and R′ are not equivalent;
ν := η; ν′ := η′;
for i from 1 to n+ n′ do

Choose a random vector r ∈ {1, 2, · · · ,K(n+ n′)}E ;
ν :=

∑
σ∈E rσ ·M(σ) · ν;

ν′ :=
∑

σ∈E rσ ·M ′(σ) · ν′;
if α · ν �= α′ · ν′ then

return: ∃w with length i such that R(w) �= R′(w);
return: R and R′ are equivalent with probability at least K−1

K ;

5.6.2 Overall correctness

After projecting both Aδ and A′
δ on L, we can reformulate SSPOD-2 in terms of

Aδ |L and A′
δ |L . Let (Ω,F ,Pδ,L) and (Ω,F ,P′

δ,L) denote the probability space
of Aδ |L and A′

δ |L , respectively.

Theorem 5.10 SSPOD-2 holds iff for all sets of traces X ∈ F that are closed
under stuttering equivalence, we have Pδ,L[X] = P′

δ,L[X].

Proof: Step 1 labels states of a PKS by the set of L-values. The probability
space of the PKS is unchanged after this step. Thus, let X ⊆ Trace(Aδ) such
that X is closed under stuttering equivalence w.r.t. L. Clearly, also X ⊆
Trace(Aδ |L), andX is closed under stuttering equivalence. Moreover, Pδ,L[X] =
Pδ[X]. Thus, SSPOD-2 holds. �

LetR denote a stuttering-free PKS obtained by applying Step 2 on a givenA.
Let TrA and TrR be probabilistic transition functions of A and R, respectively.
Step 2 removes all stuttering steps by changing TrA to TrR, given by the
following equations.
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TrR(c, c′) =

{
TrA(c, c′) if V (c) �= V (c′)∑

c′′:V (c)=V (c′′) TrA(c, c
′′) TrR(c′′, c′) otherwise.

Thus, for non-stuttering steps, TrA and TrR are the same; for stuttering
steps, TrR accumulates the probabilities of moving to c′ via some stuttering
steps c → c′′. Thus, TrR transforms the transition probabilities of stuttering
steps in A into the transition probabilities of non-stuttering steps in R. There-
fore, removing stuttering steps does not change the probabilities of sets of traces
that are closed under stuttering equivalence.

Theorem 5.11 Let X ∈ F be a set of traces that are closed under stuttering
equivalence, then PA[X] = PR[X].

Combining all results, it is obvious that to check SSPOD-2, we can check for
probabilistic language equivalence between Rδ |L and R′

δ |L .

5.6.3 Overall complexity

Step 1 is done in time complexity O(n), where n is the number of states of two
PKSs. Step 2 essentially calculates probability of reachability, and is defined
as a system of n linear equations over n variables. This equation system can
be solved in O(n3). Step 3 can be done in O(nm), where m is the number of
transitions [52]. Thus, the overall complexity is O(n3) for each pair of initial
states I and I ′.

5.7 Related work

This section reviews the existing approaches of analyzing information flow of
multi-threaded programs, and compares them with our approach. Analyzing
information flow of a program can be done dynamically or statically. Dynamic
analysis attempts to analyze information flow within a program while it is ex-
ecuting. An interesting class of dynamic analysis is dynamic runtime moni-
toring [60, 81, 95, 40]. This approach follows the control flow of a program
execution so that calculation of control dependences can be more accurate than
other dynamic approaches. However, this approach is often computational and
storage overhead, and also weak at identifying implicit information flows, in
comparison with static analysis [78].
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In general, dynamic approaches do not precisely enforce the confidentiality
property, e.g., noninterference, since (1) they only have information about how
a program behaves in a single execution, while confidentiality is a property con-
cerning all possible execution paths, and (2) they do not also have sufficient
information to predict future steps of the execution. Recently, the improved
dynamic approaches in [11, 12, 79, 13] show that the purely dynamic runtime
monitoring can enforce termination-insensitive noninterference, i.e., noninter-
ference that ignores information flow related to the termination behavior of the
program. However, as argued in Section 3.2, a security property that does not
consider termination leaks is weak, since termination leaks might be serious.
Also notice that the termination behavior is hard to control dynamically [77].
Thus, to control this behavior, it is not surprising that a dynamic mechanism
would have to be extremely conservative.

Static analysis, such as type systems, which attempts to analyze information
flow prior to the program execution, avoids many problems associated with
dynamic analysis. Static analysis also has the advantage of having much more
information about the program behavior than what can be observed from a
single execution, as in dynamic analysis. Another significant advantage of static
techniques is their ability to accurately track implicit information flows.

In comparison between dynamic and static analysis, Russo et al. [77] show
that dynamic information flow enforcement is only more permissive than static
analysis in the flow-insensitive confidentiality properties. Notice that our prop-
erties are flow-sensitive. For flow-sensitive security properties, Russo et al. show
that any purely dynamic monitor fails to be more permissive than type systems.

To verify confidentiality for multi-threaded programs, Zdancewic and Myers,
Sabelfeld et al., Terauchi, Smith, Kobayashi, and Russo et al. [96, 80, 87, 82,
53, 76] use type systems. However, Sabelfeld et al., and Russo et al. consider
explicitly the role of schedulers in their analysis. Russo et al. restrict the
allowed interactions between threads and the scheduler; thus, this allows them
to present a compositional security type system which guarantees confidentiality
for a wide class of schedulers [76]. Notice that Russo et al. propose a security
specification that is similar to noninterference, just considering final outcomes
of the execution.

Type-based approaches are efficient, since they are often polynomial in the
size of the program. However, as discussed before, they are not suited to veri-
fying existential properties and stuttering equivalence, as in SSOD and SSPOD.
Just as we expected, since the formalizations of SSOD and SSPOD are more
complicated than other confidentiality properties discussed in Chapter 3, the
verifications of our notions have higher worse-case complexity — due to the high
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complexity of the verifications of SSOD-2 and SSPOD-2. However, if we apply
our algorithmic techniques to verify other notions of observational determinism
[96, 48, 87], which do not contain the existential properties, the time complexity
is only linear in the size of the Kripke structure modeling the program.

Huisman et al. also characterize the information flow properties as temporal-
logic formulas [48], based on self-composition. In particular, Huisman et al.
characterize observational determinism in CTL*, using a special non-standard
synchronous composition operator, and also in the polyadic modal μ-calculus (a
variation of the modal μ-calculus) [48]. In later work, Huisman and Blondeel [45]
have shown that this approach is feasible, by developing an encoding in Con-
currency WorkBench, and applying this on several small examples. However,
the encoding is very ad hoc, and this is not a general solution to the problem of
efficiently verifying information flow properties, as in our approach.

The way self-composition is used in this chapter and in [48], with a temporal-
logic characterization, also bears resemblance with temporal-logic characteriza-
tions of strong bisimulation [72].

Also based on the idea of self-composition, Darvas et al. [34] character-
ize non-interference by a general program logic. This paper shows that program
logics based on simple safety and liveness properties are inadequate for this pur-
pose. Thus, they propose to use dynamic logic. The feasibility of this approach
is investigated by showing that a general purpose theorem proving tool for soft-
ware verification, such as the KeY tool, can be used to analyze information
flow of a program. Notice that dynamic logic is applicable only to sequential
deterministic programs, where the information flow property considers only the
final state of the execution.

Alur et al. [2] enrich the traditional tree model, whose paths correspond to
possible executions of the system, with labeled edges that capture observational
indistinguishability between nodes. They convert the tree into a Kripke struc-
ture, where both nodes and edges have labels, and interpret temporal logics
over it. This enriched model is expressive enough to specify information flow
properties in temporal logics. In this approach, a specification describes a set
of correct trees; and thus, the verification of secrecy requirements of software
systems reduces to a membership problem.

In later work, Černý and Alur [91] consider a weaker class of properties, so-
called conditional confidentiality properties for sequential programs, and develop
a sound automated analysis for this, based on a combination of under- and over-
approximations. Basically, the proposed verification method analyzes a program
to produce a logical formula that characterizes the confidentiality requirement.
The resulting formula can be discharged by using existing SMT tools. The
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practical impact of this work is illustrated by applying it on Java2ME.
Following the algorithmic approach, Giffhorn et al. [37] propose a verification

method based on program dependence graphs to check observational determin-
ism. A program dependence graph models information flow through a program,
where nodes are program statements, and edges are data dependences or con-
trol dependences. This verification method has a rather high time complexity,
i.e., O(n3), while our algorithm to check all-trace stuttering equivalence has a
linear time complexity in the size of the graph modeling the program. Notice
that the definition of observational determinism in this paper is very similar to
SSPOD-1. However, in their approach, there is no global security classification
of variables, i.e., a variable at one program point may contain a low value, but
at another point a high value. Thus, their trace definition is based on low op-
erations, i.e., read or write on a low variable, instead of low values as in the
traditional approaches.

Finally, Van der Meyden and Zhang [90] develop algorithmic verification
techniques on state-based models for a number of different noninterference no-
tions, and characterize the computational complexity of the associated verifi-
cation problems. This work also shows that noninterference in deterministic
finite state systems can be reduced to a safety property; thus it is verifiable in
polynomial time by existing model checkers.

Notice that Groote and Vaandrager [39] propose algorithms for the Rela-
tional Coarsest Partition with stuttering problem that is closely related to the
problem of deciding stuttering equivalence on finite Kripke structures. The al-
gorithms of Groote and Vaandrager are based on the partition refinement tech-
nique. These algorithms can be adapted to verify SSOD-1 and SSPOD-1. Basi-
cally, our algorithms — presented in Chapter 5 — and their algorithms have the
same time and space complexities, i.e., they are linear in the size of the automa-
ton that models the program. However, when generating counter-examples, in
practice, our algorithms are more efficient. The partition refinement technique
can be used to indicate whether the automaton contains an unmatched state,
but then, we have to use BFS to locate this unmatched state. Our algorithms
are only based on BFS, and thus immediately return a counter-example.

5.8 Conclusions

This chapter discussed efficient algorithmic verifications of SSOD and SSPOD.
The algorithmic method is based on a combination of novel and existing model-
checking techniques, i.e., on techniques to check stuttering equivalence and
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trace equivalence of Kripke structures. The newly developed algorithms have a
broad application. In particular, other formalizations of observational determin-
ism [96, 48, 87] can also be verified by minor modifications of our algorithms,
since all of them are based on the notion of stuttering equivalence. Besides,
as mentioned before, the newly-developed algorithms are also relevant outside
the security context, since stuttering equivalence is the fundamental concept of
concurrent and distributed systems.

Notice that the algorithm to check SSPOD-1 borrows ideas from the one we
developed for SSOD-1, but it solves a completely different problem: SSOD-1
checks if all traces are stuttering equivalent, while SSPOD-1 in essence checks
if all traces are stuttering equivalent with probability 1.

The goal of the algorithms presented in this chapter is to determine whether
a program reveals secret information during its execution. Thus, they only
give binary answers: secure or insecure. However, these algorithms can also be
adapted to give us more useful information, i.e., the reasons why the program
fails a confidentiality requirement. This will be discussed in Chapter 6.

In comparison with the logic-based approach, the program models in the
algorithmic method are far more simple. Thus, algorithmic verification ap-
proaches are capable of handling large state-space systems; which makes the
verification of real-world applications feasible. Chapter 7 will discuss the feasi-
bility of this approach and its practical capability on some case studies.



Chapter 6

Attack Synthesis

6.1 Introduction

In the previous chapter, we have seen how algorithmic techniques can be used
to efficiently verify information flow properties. Another advantage of using
algorithmic techniques is that we can synthesize attacks for insecure programs,
based on counter-example generation techniques. If a program does not satisfy
a confidentiality requirement, its execution might contain a security hole. Since
the verification algorithm is precise, if it fails, a counter-example can be pro-
duced. The counter-example describes a possible attack on this security hole
of the program; and thus, it reveals reasons why the program is rejected by
the security policy. The counter-example also helps us to recognize which kind
of scheduling policies could make the program reveal secret information. This
chapter describes how the verification algorithms presented in Chapter 5 can be
adapted to produce counter-examples for rejected programs.

Counter-example generation is a powerful technique in model checking, with
many applications, such as diagnosis, scheduler synthesis, and debugging [29,
24, 43, 8]. However, to the best of our knowledge, this idea of applying counter-
example generation to synthesize confidentiality attacks for multi-threaded pro-
grams has not previously been mentioned in the literature.

Organization of the chapter. Attack synthesis for SSOD is discussed in
Section 6.2 and Section 6.3, while attack synthesis for SSPOD is in Section 6.4
and Section 6.5. Finally, Section 6.6 concludes the chapter.

95
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Origins of the chapter. The idea and algorithms for attack synthesis
for SSOD were published in the Journal of Computer Security (JCS) [69]. The
algorithms for attack synthesis for SSPOD-1 are based on the ones developed for
SSOD-1K. To synthesize attacks for SSPOD-2, we apply an existing algorithm
from [52].

6.2 Attack synthesis for SSOD-1K

Algorithm 4 on page 68 checks whether all traces of a Kripke structure (KS)
is stuttering equivalent to a witness trace. This section extends this algorithm,
which results in Algorithm 10, to return a trace that is not stuttering equivalent
to the witness trace in case the given KS is not stuttering-trace equivalent.
Basically, Algorithms 4 and 10 are similar; however, when a state that violates
SSOD-1K is found, Algorithm 10 does not terminate, as Algorithm 4 does, but
continues until it finds an unmatched trace. The unmatched trace is returned
via Algorithm 12 — Trace Return — given below.

State c is denoted as an unmatched state if it is not equivalent to its cor-
responding state potential map. State c is also unmatched if c is equivalent
to potential map, but c is divergent, while potential map is not. Whenever an
unmatched state is found, SSOD-1K is not satisfied. A counter-example trace
is the trace from the initial state I to the unmatched state. Since the search
is based on BFS, the trace is the shortest path from I to the unmatched state
(line 11 in Algorithm 10). Notice that if c is equivalent to potential map, and c
is not divergent but potential map is, it is clear that A does not satisfy SSOD-
1K. However, the trace from I up to c is not a counter-example, since it is
still stuttering equivalent to the witness trace T . Hence, in this case, state c is
treated as a normal state, i.e., if c is an unchecked state, it is still assigned the
label potential map, and the algorithm continues until a real counter-example
is found (lines 13-15).

Consider a situation that the check hits a state c that has been checked
before. If c ∼V potential map but Map[c] �= potential map, we consider that c is
an abnormal checked state, denoted abnormal (lines 16-18). It means that there
exist at least two traces that both lead to abnormal ; and abnormal corresponds
to two different states of T . Notice that one of them hits abnormal via current ,
thus we denote current as pre abnormal .

Figure 6.1 explains this situation. According to the algorithm, state 1 and state
2 are both mapped to u1. Next, state 4 is also mapped to u1, since it follows
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Figure 6.1: Abnormal state

state 1 via a stuttering step. In this check, we store parent [state 4] = state 1.
Next, the algorithm examines the successor of state 2, i.e., state 3, and maps
state 3 to u2; since this is a non-stuttering transition and state 3 is equivalent
to u2.

When the algorithm examines the successor of state 3, which is state 4, the
potential map is u3, since this is a non-stuttering transition. However, state 4
has been explored before, and its current assigned label is u1. Since the current
label of state 4 is different from potential map, but state 4 is still equivalent
to potential map, state 4 is an abnormal checked state. Notice that if state 4
and potential map are not equivalent, state 4 is an unmatched state. State 3
is the pre abnormal state, since in this check, state 4 is its successor. However,
parent [state 4] still indicates that state 1 is the parent of state 4, i.e., referring
to the step of checking the successor of state 1.

When an abnormal is found, SSOD-1K is not satisfied. However, neither
of the two traces from I — denoted by init state in the algorithm — up to
abnormal , e.g., abb and abcb in Figure 6.1, is a complete counter-example.
Actually, one of them is a prefix of a real counter-example.

Therefore, the function Trace Return returns two traces: P1 that is from
init state to parent [abnormal ], e.g., P1 = ab, and P2 that is from init state to
pre abnormal , e.g., P2 = abc. The current BFS check is stopped. The new
check starts from abnormal (given by Algorithm 13), in which P1 is extended
to a lasso. In this new check, if an unmatched state is found, we are done;
otherwise, a complete lasso T1 is obtained, i.e., T1 = P1 + P3. In Figure 6.1,
T1 = a(bbbc)ω. If T1 is not stuttering equivalent to the witness trace T , it
is a counter-example; otherwise, the counter-example is the lasso T2 that is an
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extension of P2+P3. The reason is that three traces T , T1, and T2 cannot be all
stuttering equivalent to each other. In Figure 6.1, T1 is the counter-example.

If no counter-example is found after all reachable states from the initial state
have been explored, SSOD-1K is satisfied (see Algorithm 10).

Algorithm 10: Attack Synthesis for SSOD-1K (A, T )
1. for all states c ∈ S do Map[c] := ⊥;
2. continue := true;
3. Q := empty queue(); enqueue(Q, init state);
4. parent [init state] := root ; // to indicate the start of traces
5. Map[init state] := u0; // u0 is T0
6. while !empty(Q) ∧ continue do
7. current := dequeue(Q);
8. u := Map[current ];
9. for all states c ∈ Succ(A, current) do
10. potential map := (c ∼V current) ? u : Succ(T, u);
11. Unmatched-State Check 1 (c, potential map, current)
12. case
13. [] Map[c] = ⊥ � enqueue(Q, c);
14. parent [c] := current ;
15. Map[c] := potential map;
16. [] Map[c] �= potential map �

17. continue := false;
18. Abnormal-State Check (current , c);
19. return continue;

The function Unmatched-State Check 1 (c, potential map, current) re-
turns a counter-example if c is an unmatched state (see Algorithm 11).

Algorithm 11: Unmatched-State Check 1 (c, potential map, current)
if c �∼V potential map or

Divergent [c] = true ∧Divergent [potential map] = false then
parent [c] := current ;
continue := false;
Counter-Example = Trace Return(init state, c);

The function Trace Return (a, b) returns a finite trace from state a to
state b. Notice that the stack trace stores the trace backwards, i.e., a is the last
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element that enters the stack (see Algorithm 12).

Algorithm 12: Trace Return (a, b)
trace := empty stack(); // trace is a stack
PUSH (trace, b); // Add an item to the stack
parent value := parent [b];
while parent value �= parent [a] do

PUSH(trace, parent value);
parent value := parent [parent value];

while !empty(trace) do
return POP (trace); // Remove an item from the top of the stack

The function Abnormal-State Check (pre abnormal , abnormal) returns
a counter-example when an abnormal state is found (see Algorithm 13).

Algorithm 13: Abnormal-State Check (pre abnormal , abnormal)
Let P1 = Trace Return(init state, parent [abnormal ]);
Let P2 = Trace Return(init state, pre abnormal);

// Except states on P1, erase the labels and parents of other states
for all states c ∈ S ∧ c /∈ P1 do

Map[c] := ⊥;
parent [c] := ⊥;

// The new check starts from abnormal
current := abnormal ;
u := Map[abnormal ];
c := some state ∈ Succ(A, current);

// Extend P1 to a lasso
while Map[c] = ⊥ do

potential map := (c ∼V current) ? u : Succ(T, u);
// if an unmatched state is found, we are done

Unmatched-State Check 1 (c, potential map, current);
parent [c] := current ;
Map[c] := potential map;
current := c;
u := potential map
c := some state ∈ Succ(A, current)

// Return T1 if it is not stuttering equivalent to T
if Map[c] �= potential map then

Counter-Example = P1 + Trace Return(abnormal , c);
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// Return T2 if T1 is stuttering equivalent to T
if Map[c] = potential map then

if c ∈ P1 then
Counter-Example = P2 + Trace Return(abnormal , c) +

Trace Return(c, abnormal);
else Counter-Example = P2 + Trace Return(abnormal , c);

Notice that in case c ∈ P1, P2 + Trace Return(abnormal , c) is not a
complete lasso (see Figure 6.1 for a visual example), a counter-example should
be P2 + Trace Return(abnormal , c) + Trace Return(c, abnormal).

Theorem 6.1 In case a Kripke structure A does not satisfy SSOD-1K, Algo-
rithm 10 returns a trace that is not stuttering equivalent to the witness trace T .

Proof: Algorithm 10 is a variant of Algorithm 4 whose correctness has been
proved. Here we show that the algorithm produces a correct counter-example.

Case c �∼V potential map. It is clear that the trace from init state to c is an
counter-example.

Case Divergent [c] = true and Divergent [potential map] = false. Since c is a di-
vergent state, there exists a trace that goes from init state to c, and then
stutters in c forever. State potential map is not divergent, thus, it is not
the final state of T . Since T is stuttering-free, it can evolve to a state that
is not equivalent to potential map. Therefore, the trace from init state to
c is an counter-example.

Otherwise,. Let P1 = Trace Return (init state, parent [abnormal ]), and
P2 = Trace Return (init state, pre abnormal). Let T1 denote a lasso
that is an extension of P1 from abnormal , i.e., T1 = P1 + P3, where P3 is
the extension. While extending P1, if an unmatched state is found, we are
done. Otherwise, when the lasso T1 is complete, i.e., when Map[c] �= ⊥,
one of the two following scenarios occurs.

Case Map[c] �= potential map. T1 is not stuttering equivalent to T , since
c corresponds to two different states of T .

Case Map[c] = potential map. It is clear that T1 is stuttering equivalent
to a prefix of T , i.e., the prefix up to potential map. We show that
T1 is actually stuttering equivalent to the whole T . Given that c
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has been checked before, then c is the start and end of a loop that
terminates the lasso T1.

Case c is not divergent. Since c is mapped to potential map twice,
potential map is also the start and end of a loop that terminates
T . Thus T1 ∼ T .

Case c is a divergent state. Thus, potential map is also divergent.
Therefore, potential map is the final state of T ; then T1 ∼ T .

Let T2 denote an extension of P2+P3 to a lasso. Since T is determin-
istic stuttering-free, and abnormal is mapped to two different states
of T , T1 and T2 cannot be both stuttering equivalent to T . Since
T1 ∼ T , T2 is the counter-example.

�

6.3 Attack synthesis for SSOD-2K

Given two deterministic stuttering-free Kripke structures R and R′, if traces of
R and R′ do not satisfy the SSOD-2K requirement, Algorithm 14 and Parent
Return will output a trace of R that does not match with any trace of R′, or
vice versa.

It is clear that for R and R′, any two strongly bisimilar states must be in the
same block. We denote a pair of states of R and R′ to be valid if they have the
same label, but they are not in the same block of the stable partition P given
by the algorithm computing bisimilarity equivalence classes in Section 5.4.

Given a valid pair (c, c′) (c ∈ SR, c′ ∈ SR′ , where SR, SR′ are state sets
of R and R′, respectively). Similarly, two successors of (c, c′) are also valid if
they have the same label, but they are not strongly bisimilar. Therefore, from
an initial state, a counter-example trace must pass states in a sequence of valid
pairs until it hits a state such that the other trace (from the other initial state)
cannot find a successor to form a valid pair. The shortest counter-example trace
is found based on BFS.

Given two valid states c ∈ SR and c′ ∈ SR′ . Let SameBlock(c, c′) be a
predicate to check whether c and c′ are in the same block of the given partition,
i.e., SameBlock (c, c′) {return (∃Q ∈ P. c ∈ Q∧ c′ ∈ Q)}. We formally define
Valid (c, c′) {return (c ∈ SR∧c′ ∈ SR′ ∧V (c) = V (c′)∧¬SameBlock (c, c′)},
and the set Valid Succ(c, c′) of valid successors of (c, c′) as follows,

Valid Succ(c, c′) = {(d, d′) | c ∈ SR, c′ ∈ SR′ . c→ d, c′ → d′ ∧Valid (d, d′)}.
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We also define a predicate Unmatched Succ on a valid pair (c, c′) to (1)
check whether either c or c′ can take a transition to a state d such that none of
the other state’s successors is equivalent to d, and to (2) return d, if d exists.
Formally,

Unmatched Succ (c, c′) {
if ( c→ d ∧ �d′ ∈ SR′ . c′ → d′ ∧ V (c′) = V (c)) then return (d)
if ( c′ → d′ ∧ �d ∈ SR. c→ d ∧ V (c) = V (c′)) then return (d′) }

Therefore, given the stable partition P, the following algorithm explores the
state spaces and returns the first state given by Unmatched Succ.

Algorithm 14: Invalid-State Search (P)
QR[0] := initial state of R;
parentR[QR[0]] := root ;
QR′ [0] := initial state of R′;
parentR′ [QR′ [0]] := root ;
i := 0; // i: position of the latest items in both QR and QR′

while (true) do
Unmatched Succ (QR[i],QR′ [i]);
for each (c, c′) ∈ Valid Succ(QR′ [i],QR′ [i]) do

QR[i+ 1] := c;
parentR[QR[i+ 1]] := QR[i];
QR′ [i+ 1] := c′;
parentR′ [QR′ [i+ 1]] := QR′ [i];

i := i+ 1;

Then Parent Return outputs the trace from the initial state up to the
state returned by the algorithm.

Theorem 6.2 In case R and R′ do not satisfy SSOD-2K, Algorithm 14 and
Parent Return return a trace of R that does not match with any trace of R′,
or vice versa.

Proof: Two queues QR and QR′ store pairs of valid successors reachable
from two initial states. When the first unmatched state is found, the trace from
the initial state to this state is returned. Due to BFS, this trace is one of the
shortest paths from the initial state to it.

Notice that in case no state is returned byUnmatched Succ (QR[i],QR′ [i]),
for each successor of QR[i], there must exist a successor of QR′ [i] such that these
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two states have the same label, and vice versa. If none of these pairs is valid, i.e.,
two states of any pair are bisimilar, then QR[i] and QR′ [i] are also bisimilar.
This is a contradiction, since QR[i] and QR′ [i] are a valid pair. Thus, the set
Valid Succ(QR[i],QR′ [i]) is not empty; and the algorithm continues until an
unmatched state is found. �

Now, we have to derive the original traces of A that correspond to the trace
of R given by Algorithm 14, since these original traces are the real counter-
examples.

Derive the original traces of A from a trace of R. Suppose that
R is the corresponding deterministic Kripke structure of the stuttering-free
Asf . We define a relation R between a transition of Asf and a transition of
R, i.e., R ⊆→Asf × →R as follows. Let trn denote a transition, source(trn) and
dest(trn) the source and the destination state of trn.

∀trn ∈→Asf , trn ′ ∈→R . trn R trn ′ ⇔ V (source(trn)) = V (source(trn ′)) ∧
V (dest(trn)) = V (dest(trn ′)).

Given a trace T of R, the following algorithm derives a set Trace(T ) = {T ′}
of Asf corresponding to T . Let N denote the number of transitions in T . We
rewrite T as an array of N transitions, i.e., T = T [0], T [1], . . . , T [N − 1], where
T [i] = (Ti, Ti+1). We implement an array States of size N + 1, where each
element States [i] is a set of states of Asf , i.e., States [i] ⊆ SAsf .

Algorithm 15: Trace Map (T )
States [0] := initial state of Asf ;
for i := 1 to N do

States [i] := {c′ ∈ SAsf | ∃c ∈ States [i− 1]. c→Asf c′ ∧ (c, c′) R T [i− 1]};
for each c ∈ States [N ] do

current := c;
for i := N − 1 to 0 do

Take c′ ∈ States [i] ∧ (c′, current) R T [i];
T ′[i] := (c′, current);
current := c′;

Traces of A can be derived easily, since we assumed that states are numbered
and the transition relation between states is accessible.
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6.4 Attack synthesis for SSPOD-1

The algorithms of attack synthesis for SSOD-1K can also be used for SSPOD-
1. However, for SSPOD-1, we define an unmatched state in a slightly different
way. State c is unmatched if it is not equivalent to its corresponding state
potential map. State c is also unmatched if c is equivalent to potential map,
but c is a final state, while potential map is not.

Thus, if we replace Algorithm 11: Unmatched-State Check 1 with the
following algorithm, i.e., Unmatched-State Check 2, in Algorithm 10 and
Algorithm 13, these two algorithms can be used to generate counter-examples
for SSPOD-1.

Algorithm 16: Unmatched-State Check 2 (c, potential map, current)
if c �∼V potential map or

final(A, c) ∧ ¬final(T, potential map) then
parent [c] := current ;
continue := false;
Counter-Example = Trace Return(init state, c);

Notice that, if c is equivalent to potential map, and c is not a final state,
but potential map is, it is clear that A does not satisfy SSPOD-1. However,
the trace from I up to c is not a counter-example, since it is still stuttering
equivalent to the witness trace T . Hence, in this case, Algorithm 10 continues
until a real counter-example is found.

6.5 Attack synthesis for SSPOD-2

Counter-examples for SSPOD-2 can be generated incrementally, starting with
the empty string, and using Algorithm 9 as a selector to choose the next low
operation (denoted by a symbol in the language) at each step to construct a
counter-example. The following algorithm is also proposed by Kiefer et al.,
based on Algorithm 9 [52].

Algorithm 17: Language Equivalence with Counter-example (R,R′)
ν0 := η; ν′0 := η′;
for i from 1 to n+ n′ do

Choose a random vector r ∈ {1, 2, · · · ,K(n+ n′)}E ;
νi :=

∑
σ∈E rσ ·M(σ) · νi−1;
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ν′i :=
∑

σ∈E rσ ·M ′(σ) · ν′i−1;
if α · ν �= α′ · ν′ then

w := ε; // An empty string

θ := α; θ′ := α′;
for j from n+ n′ down to 1 do

Choose σ ∈ E with θ ·M(σ) · νj−1 �= θ′ ·M ′(σ) · ν′j−1;
w := wσ;
θ := θ ·M(σ);
θ′ := θ′ ·M ′(σ);

return: w ;
return: R and R′ are equivalent with probability at least K−1

K ;

Based on the sequence of operations w , the real counter-example can be
derived by the technique presented in Section 6.3.

6.6 Conclusions

This chapter presented counter-example generation techniques to synthesize at-
tacks for our confidentiality properties. That is, if for a given scheduler, a pro-
gram does not satisfy a confidentiality requirement, we generate program traces
that reveal the reason why the confidentiality requirement is broken. This infor-
mation can be used to identify a set of safe and unsafe schedulers, or to suggest
a way to mend this security hole.

A counter-example gives us information about how a suitable scheduling can
make a program execution leak secret information. However, it is also interesting
to know how much information has been revealed. This will be discussed in Part
3 of this thesis.

The next chapter discusses the practical implementation of our algorithmic
approaches to verify and derive counter-examples for information flow proper-
ties, together with case studies.





Chapter 7

Implementation and Case
Studies

7.1 Introduction

The previous chapters discuss how we are able to check the security of a multi-
threaded program in theory. This chapter discusses how we do it in practice,
i.e., how we obtain the state space of the program execution under the control
of a scheduler, and how we find that the execution contains an interleaving
that can be exploited to derive secret information. The algorithms presented in
Chapter 5 and Chapter 6 are implemented as a part of the LTSmin tool set [18].
We provide two case studies to show the feasibility of our algorithmic approaches
and the practical capability of the implementation. The first case study is a non-
deterministic multi-threaded program, from [37, 85], showing how the scheduling
policy can be used to make a program execution leak secret information. The
second case study is a probabilistic version of the dining cryptographer problem
[23] showing how an attacker can derive secret information from the probabilistic
outcomes.

7.2 Implementation

The proposed algorithmic techniques are implemented as a part of the LTSmin
tool set, which is a tool set for symbolic, distributed and multi-core model check-
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ing and manipulating transition systems [18]. We choose LTSmin since firstly,
our algorithms are applied to large state-space Kripke structures, which model
the behavior of programs, and LTSmin provides means to store the transition
systems in a compressed format. Secondly, our algorithms rely on stuttering-
transition compression, bisimularity checking, and determinization techniques,
and LTSmin incorporates implementations for all these features.

The concept of the LTSmin tool set is to provide a framework that combines
the convenience of a variety of existing modeling languages with the power of
different verification techniques. Since basically, the verification algorithms do
not rely on a specific modeling language, LTSmin comes up with an interme-
diate interface, called PINS, that separates the responsibility for state-space
generation from the state space exploration tools. The PINS interface connects
language modules to analysis algorithms, as follows:

Language Modules PINS Analysis Algorithms

The key feature of LTSmin is its modularity : language front-ends, PINS lay-
ers, and algorithmic back-ends are completely decoupled. The language modules
are responsible for translating the system specification to the PINS interface,
i.e., a textual description of the system. The PINS interface is where the state
space is generated. The underlying semantic model of PINS is a transition sys-
tem (Kripke structure) with edge and state labels. Thus, via this interface,
LTSmin abstracts away language-specific features. The analysis algorithms are
purely based on this Kripke structure, and thus, are completely unaware of the
details of specification languages. Besides, this interface also allows existing
language modules to connect easily. Thus, LTSmin is a language-independent
model checking tool set.

To model systems, we choose the PRISM language, since it supports mod-
eling formally many types of systems that exhibit probabilistic behavior, and
contain parallel composition between modules [58]. The PRISM language is a
simple, high-level state-based language, based on a guarded command notation.
It can be used to model discrete-time Markov chains (dtmc), continuous-time
Markov chains (ctmc), Markov decision processes (mdp) and probabilistic timed
automata (pta).

The fundamental components of a PRISM model are modules, i.e., a model is
composed of a number of modules which can interact with each other. Modules
can be used to model threads of a multi-threaded program. Thus, the PRISM
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model corresponding to a multi-threaded program is the parallel composition of
modules representing threads.

Since the PRISM language allows to define precisely the way in which mod-
ules are composed in parallel, the scheduler’s choices can be encoded by speci-
fying at each step, which module(s) is (are) enabled to make a transition. Thus,
the structure of our implementation can be illustrated via the following diagram:

PRISM

Program, Scheduler

LTSmin-convert LTSmin-check

Counter-example

encode

states,trans KS secure

insecure

The encoding of the program and the given scheduler is done manually.
Based on the model, PRISM exports the set of reachable states, and the ma-
trix representing the transition relations between states. Based on these two
files, the LTSmin-convert tool (an existing tool of the LTSmin tool set) con-
structs a Kripke structure modeling the operational execution of the program.
The LTSmin-check tool takes this Kripke structure as the input, and then
verifies the required confidentiality properties. If the data violate one of the
requirements, a counter-example is generated.

Notice that for probabilistic multi-threaded case studies modeled by the
PRISM language, it is more convenient to generate the state space directly in
PRISM. Thus, the implementation presented in this chapter does not include the
PINS interface. However, for a system that can be modeled by other languages
such as mCRL2, Promela, DVE, UPPAAL etc., PINS can be used to construct
the Kripke structure for the LTSmin-check tool.

Inside the LTSmin-check tool, the algorithms to verify and derive counter-
examples for SSOD-1K (Algorithm 1-4, Algorithm 10-13) and SSPOD-1 (Algo-
rithm 6-7, Algorithm 16-17) are new implementations, while the implemen-
tation of SSOD-2 (Algorithm 5) is basically based on the existing features
provided by the LTSmin tool set, such as stuttering-step removing, Kripke-
structure determinization, and strong-bisimilarity checking. Our implementa-
tion is still ongoing with the implementation of the algorithms to verify and
derive counter-examples for SSPOD-2 (Algorithm 8-9), and algorithms to de-
rive counter-examples for SSOD-2 (Algorithm 14-15).
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7.3 Case study 1: a possibilistic model

The following program, borrowed from [37, 85], consists of three threads that
read a private value PIN , and then compute a public value result . Via this case
study, we show that due to the interaction between threads and the control of
an appropriate scheduler, the confidentiality of a multi-threaded program might
be violated.

• Thread C1

1. while (mask != 0) do

2. while (trigger0 = 0) do skip ; // wait
3. result := result |mask ; // Bitwise ‘or’
4. trigger0 := 0 ;
5. maintrigger := maintrigger + 1 ;
6. if (maintrigger = 1) then trigger1 := 1 ;

• Thread C2

1. while (mask != 0) do

2. while (trigger1 = 0) do skip ;
// Bitwise ‘and’ with the complement of mask

3. result := result & ∼mask ;
4. trigger1 := 0 ;
5. maintrigger := maintrigger + 1 ;
6. if maintrigger = 1 then trigger0 := 1 ;

• Thread C3

1. while (mask != 0) do

2. maintrigger := 0 ;
3. if (PIN &mask) = 0 then trigger0 := 1

else trigger1 := 1 ;
4. while (maintrigger != 2) do skip ;
5. mask := mask / 2 ;
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In this program, three parallel-composed threads communicate via a shared
memory, where, except result , all other variables are high. At first glance, this
program seems not to leak information, since there is no explicit or implicit flow
from the private PIN to the public result .

However, if the scheduling policy is fair, e.g., a uniform scheduler, and if this
program starts in an initial state where:

maintrigger = 0, trigger0 = 0, trigger1 = 0, result = 0,
mask is a power of 2, and
PIN is an arbitrary natural number that is less than twice mask ,

the value of PIN might be leaked. In this case, mask has the binary form
010 . . . 0; and thus, the outcome of PIN &mask will determine the value of the
bit in PIN that corresponds to the bit 1 in mask . Depending on this bit, the
ordering of the executions of C1 and C2 is determined. As a consequence, the
corresponding bit in result is given the same value. Thus, eventually, the value
of PIN will be copied into result .

Now, we show how we encode this multi-threaded program as a PRISM
model. The corresponding PRISM model is composed of three modules, where
each module models a thread. Each module contains a number of variables,
whose values describe a state of the module. The global state of the whole
model is determined by the local state of all modules in PRISM. The behavior
of each module is described by a set of commands, having the following general
form:

[] guard -> prob1 : update1 + ... + probn : updaten;

The guard is a predicate over variables, including those belonging to other
modules. Each update describes an enabled transition when the guard is satis-
fied. A transition is specified by giving new values to variables in the module,
together with the probability of the transition.

In this model, when the guard is satisfied, the update is deterministic. There-
fore, the command has a simpler form, i.e., [] guard -> update;

We encode the shared variables as global variables. To indicate which com-
mand line of a thread does the update, we introduce for each thread a local
variable, named (program) counter. The PRISM model of the above program
is given below, where we set PIN = 23 and initially, mask = 16.
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dtmc

global result : [0..64] init 0;

global trigger0 : [0..1] init 0;

global trigger1 : [0..1] init 0;

global maintrigger : [0..2] init 0;

global mask : [0..32] init 16;

const int pin=23;

module ThreadC1

counter1 : [1..6] init 1;

[] counter1=1 & mask=0 -> true; // stutters here
[] counter1=1 & mask!=0 -> (counter1’=2);

[] counter1=2 & trigger0=0 -> true;

[] counter1=2 & trigger0=1 -> (counter1’=3);

[] counter1=3 & mod(floor(result/mask),2)=0 & result+mask <=64

-> (result’=result+mask) & (counter1’=4);

[] counter1=3 & mod(floor(result/mask),2)=1 -> (counter1’=4);

[] counter1=4 -> (trigger0’=0) & (counter1’=5);

[] counter1=5 & maintrigger+1<3 -> (maintrigger’=maintrigger+1)

& (counter1’=6);

[] counter1=6 & maintrigger=1 -> (trigger1’=1) & (counter1’=1);

[] counter1=6 & maintrigger=0 -> (counter1’=1);

endmodule

module ThreadC2

counter2 : [1..6] init 1;

[] counter2=1 & mask=0 -> true; // stutters here
[] counter2=1 & mask!=0 -> (counter2’=2);

[] counter2=2 & trigger1=0 -> true;

[] counter2=2 & trigger1=1 -> (counter2’=3);

[] counter2=3 & mod(floor(result/mask),2)=1

-> (result’=result-mask) & (counter2’=4);
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[] counter2=3 & mod(floor(result/mask),2)=0 -> (counter2’=4);

[] counter2=4 -> (trigger1’=0) & (counter2’=5);

[] counter2=5 & maintrigger+1<3 -> (maintrigger’=maintrigger+1)

& (counter2’=6);

[] counter2=6 & maintrigger=1 -> (trigger0’=1) & (counter2’=1);

[] counter2=6 & maintrigger=0 -> (counter2’=1);

endmodule

module ThreadC3

counter3 : [1..6] init 1;

[] counter3=1 & mask=0 -> true; // stutters here
[] counter3=1 & mask!=0 -> (counter3’=2);

[] counter3=2 -> (maintrigger’=0) & (counter3’=3);

[] counter3=3 & mod(floor(pin/mask),2)=0 -> (trigger0’=1) &
(counter3’=4);

[] counter3=3 & mod(floor(pin/mask),2)=1 -> (trigger1’=1) &
(counter3’=4);

[] counter3=4 & maintrigger!=2 -> true;

[] counter3=4 & maintrigger=2 -> (counter3’=5);

[] counter3=5 -> (mask’=floor(mask/2)) & (counter3’=1);

endmodule

Notice that to encode command line 3 in Thread C1, we first check whether
the bit in result that corresponds to the bit 1 in mask has been set or not, i.e., by
mod(floor(result/mask),2), where floor(x) rounds x down to the nearest
integer. If this bit is still 0, we set it by result’=result+mask; otherwise, we
do nothing. Notice that before increasing a variable in the PRISM language,
we need to ensure that this update does not give an out-of-range value, i.e., by
checking result+mask <=64 before the update. Command line 3 in Thread C2
is encoded similarly.

To model a uniform scheduler, we encode this example as a dtmc model, i.e.,
the model is constructed as the parallel composition of its modules, and in each
step, each module is enabled with an equal probability [58].

PRISM shows that this model consists of 1000 states and 2414 transitions.
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Based on the set of states and transition relations between states, the Kripke
structure is constructed via LTSmin-convert. Since this program is non-
probabilistic, we check the SSOD-properties. As expected, LTSmin-check re-
jects this program, since the traces of this model do not satisfy the SSOD-1K
requirement.

LTSmin-check also shows that the model contains two traces that are not
stuttering equivalent w.r.t. the values of the public variable result , i.e., one
trace consists of states: 0, 1, 2, 5, 12, 21, 22, 23, 13, 15, 26, 28, and another
trace consists of states: 0, 1, 2, 5, 12, 21, 22, 23, 13, 15, 26, 28, 92. The tool
also indicates that state 28 is divergent. These are the output data of the tool.

To get more information, we refer to data of these states in the state and
transition files. States of the model are represented by the values of its vari-
ables, i.e., (result, trigger0, trigger1, maintrigger, mask, counter1,

counter2, counter3), in order. Based on these states’ data, we can derive the
interleaving order that results in these two counter-example traces, as shown
below.

State 0: (0 0 0 0 16 1 1 1) - Initial state
State 1: (0 0 0 0 16 1 1 2) - ThreadC3 is picked

State 2: (0 0 0 0 16 1 1 3) - ThreadC3 is picked

State 5: (0 0 0 0 16 1 2 3) - ThreadC2 is picked

State 12: (0 0 0 0 16 2 2 3) - ThreadC1 is picked

State 21: (0 0 1 0 16 2 2 4) - ThreadC3 is picked

State 22: (0 0 1 0 16 2 3 4) - ThreadC2 is picked

State 23: (0 0 1 0 16 2 4 4) - ThreadC2 is picked

State 13: (0 0 0 0 16 2 5 4) - ThreadC2 is picked

State 15: (0 0 0 1 16 2 6 4) - ThreadC2 is picked

State 26: (0 1 0 1 16 2 1 4) - ThreadC1 is picked

State 28: (0 1 0 1 16 3 1 4) - ThreadC1 is picked

State 92: (16 1 0 1 16 4 1 4) - ThreadC1 is picked

Notice that state 28 is divergent. When the model is in this state, if the
scheduler picks ThreadC3, since counter3 = 4 and maintriger �= 2, the trace
will stutter here, i.e., due to the execution of command line 4 in Thread C3.
However, if the scheduler picks ThreadC1 (as shown above), state 28 makes a
transition to state 92 by the execution of command line 3 in Thread C1. In
state 92, the value of result is 16. Hence, these two traces are not stuttering
equivalent.

It should be stressed that this multi-threaded program leaks information
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only when the scheduling policy is fair. Unfair schedulers that give one thread
priority over other threads would make this program secure, and thus, be ac-
cepted by the tool. Since the updates inside a module are enabled only when
the guard is satisfied. Thus, the priority of a module over other modules can
be modeled by setting suitable guards. Also notice that the running time of
LTSmin-check for this case study is less than a second.

7.4 Case study 2: a probabilistic model

For a probabilistic model, we consider the dining-cryptographer case study [23].
Three cryptographers gather around a table to have dinner at a restaurant.
The waiter informs them that the meal has been paid by someone, who could
be one of the cryptographers or their boss. The three cryptographers respect
each other’s right to make an anonymous payment, but would like to know if
the boss has paid or not. So they decide to execute the following two-stage
protocol [23]:

• In the first stage, each cryptographer flips an unbiased coin, and then in-
forms the cryptographer on the right the outcome. Figure 7.1 illustrates
this situation, for example, an edge from Cryptographer 1 to Cryptogra-
pher 2 shows that Cryptographer 1 can see the coin of Cryptographer 2.

• In the second stage, each cryptographer publicly states whether the two
coins that he can see (his own coin and the left-hand neighbor’s coin) are
the same (‘agree’) or different (‘disagree’). However, if he actually paid
for the dinner, then he instead states an opposite answer, i.e., ‘disagree’
when the coins are the same, and ‘agree’ when the coins are different.

After the second stage, if the number of ‘agrees’s is odd, it implies that none
of the cryptographers paid (so the boss must have paid). Otherwise, it would
imply that one of the cryptographers paid. This protocol is secure, since in case
one of the cryptographers has paid for the dinner, the others cannot find out
the identity of that person [23].

To make this protocol leak information, we make a slight change to it: the
coins are biased, i.e., heads (modeled as value 1) come up with probability 0.6,
and tails (modeled as value 2) come up with probability 0.4. We consider the
case that one of the cryptographers has paid for the dinner, and another one
is the attacker, who tries to find out the payer’s identity. This case study is
encoded as the following PRISM model.
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2

1 3

can see can see

Crypt 3 can see Crypt 1’s coin

Figure 7.1: Dining cryptographers

dtmc

// constants used to indicate identities of cryptographers
const int p1 = 1;

const int p2 = 2;

const int p3 = 3;

// global variable which decides who pays
// (pay=i then cryptographer i paid)
global pay : [1..3];

// parity outcomes
global par : [0..1];

//agree : [0..1] - 0 : disagree, 1 : agree)
global agree1 : [0..1];

global agree2 : [0..1];

global agree3 : [0..1];

// module for the first cryptographer
module Crypt1

coin1 : [0..2]; // value of its coin
s1 : [0..1]; // its status (0 = not done, 1 = done)
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// flip coin
[] coin1=0 -> 0.6 : (coin1’=1) + 0.4 : (coin1’=2);

// make statement (once relevant coins have been flipped)
// agree (coins the same and does not pay)
[] s1=0 & coin1>0 & coin2>0 & coin1=coin2 & (pay!=p1)

-> (s1’=1) & (agree1’=1);

// disagree (coins different and does not pay)
[] s1=0 & coin1>0 & coin2>0 & !(coin1=coin2) & (pay!=p1)

-> (s1’=1);

// disagree (coins the same and pays)
[] s1=0 & coin1>0 & coin2>0 & coin1=coin2 & (pay=p1)

-> (s1’=1);

// agree (coins different and pays)
[] s1=0 & coin1>0 & coin2>0 & !(coin1=coin2) & (pay=p1)

-> (s1’=1) & (agree1’=1);

// update the bit par
[] s1>0 -> (par’=parity);

endmodule

// module for the second cryptographer
module Crypt2

coin2 : [0..2]; // value of its coin
s2 : [0..1]; // its status (0 = not done, 1 = done)

[] coin2=0 -> 0.6 : (coin2’=1) + 0.4 : (coin2’=2);

[] s2=0 & coin2>0 & coi3>0 & coin2=coin3 & (pay!=p2)

-> (s2’=1) & (agree2’=1);

[] s2=0 & coin2>0 & coin3>0 & !(coin2=coin3) & (pay!=p2)

-> (s2’=1);

[] s2=0 & coin2>0 & coin3>0 & coin2=coin3 & (pay=p2)

-> (s2’=1);
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[] s2=0 & coin2>0 & coin3>0 & !(coin2=coin3) & (pay=p2)

-> (s2’=1) & (agree2’=1);

[] s2>0 -> (par’=parity);

endmodule

// module for the third cryptographer
module Crypt3

coin3 : [0..2]; // value of its coin
s3 : [0..1]; // its status (0 = not done, 1 = done)

[] coin2=0 -> 0.6 : (coin2’=1) + 0.4 : (coin2’=2);

[] s3=0 & coin3>0 & coi1>0 & coin3=coin1 & (pay!=p3)

-> (s3’=1) & (agree3’=1);

[] s3=0 & coin3>0 & coin1>0 & !(coin3=coin1) & (pay!=p3)

-> (s3’=1);

[] s3=0 & coin3>0 & coin1>0 & coin3=coin1 & (pay=p3)

-> (s3’=1);

[] s3=0 & coin3>0 & coin1>0 & !(coin3=coin1) & (pay=p3)

-> (s3’=1) & (agree3’=1);

[] s3>0 -> (par’=parity);

endmodule

// set of initial states
// (cryptographers in their initial state, the high variable ‘pay’ can be anything)
init par=0 & coin1=0 & s1=0 & agree1=0 & coin2=0& s2=0

& agree2=0 & coin3=0 & s3=0 & agree3=0 endinit

// parity of number of ‘agree’s (0 = even, 1 = odd)
formula parity = func(mod, agree1+agree2+agree3, 2);

Typically, a variable declaration specifies the initial value for that variable,
as in Case study 1. The initial state of the model is then defined by the initial
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values of all variables. To specify a model that has multiple initial states, we use
the init...endinit construct. Any state which satisfies the predicate between
the init and endinit keywords is an initial state.

We show that this probabilistic protocol contains a probabilistic data chan-
nel. Without lack of generality, we assume that cryptographers inform state-
ments about the coins’ values in order, i.e., Cryptographer 1 - 2 - 3. Since the
attacker is one of the cryptographers, he can observe the parity of the number
of ‘agrees’s at each step. Assume that after following the protocol, the trace
of parity is 1 - 0 - 0. Based on this trace, it is trivial to see that the cryp-
tographers’s statements about the coins’ values (in order) are: agree - agree -
disagree.

Without lack of generality, we assume that Cryptographer 2 is the attacker.
Based on the final parity, i.e., the number of ‘agrees’s is even, he knows that
the boss did not pay; thus either Cryptographer 1 or Cryptographer 3 has paid
for the dinner. Assume that the coin of Cryptographer 2 is head. Thus, the coin
of Cryptographer 3 must be also head, since the answer of Cryptographer 2 is
‘agree’, and Cryptographer 2 can see the coin of Cryptographer 3. Cryptogra-
pher 2 cannot see the coin of Cryptographer 1; thus, he only knows the values
of coins are either head - head - head or tail - head - head.

Crypt 1 Crypt 2 Crypt 3
Case 1: head head head ⇒ Crypt 3 paid
Case 2: tail head head ⇒ Crypt 1 paid

If the coins are head - head - head, Cryptographer 3 must be the payer,
since he lied about his result. Similarly, if the coins are tail - head - head,
Cryptographer 1 is the payer. Since the coins are biased, and heads come up
with probability 0.6, it is more likely that Cryptographer 3 is the one who paid.
This is a probabilistic leak.

PRISM indicates that the above model consists of 411 states and 1050 tran-
sitions. As expected, this model is rejected by LTSmin-check. It is clear that
SSPOD-1 is not satisfied, since traces of parity are not all stuttering equivalent.
For example, if the coins are tail - tail - head, and if Cryptographer 1 is the
payer, the answers of the cryptographers will be disagree - disagree - disagree.
Thus, the corresponding trace of parity will be 0 - 0 - 0, which is not stuttering
equivalent to the traces given above.

Notice that looking only at the final states of parity cannot derive useful
information, since the final parity is always 0. The running time of LTSmin-
check for this case study is also less than a second.
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7.5 Conclusions

This chapter discussed the feasibility of our algorithmic approaches, which is
illustrated by two case studies. Via case studies, we show how to model (proba-
bilistic) multi-threaded systems by the PRISM language, and how the tool not
only checks the confidentiality properties of the system, but also describes pos-
sible attacks on security holes if the systems are insecure. All verifications were
done within seconds. The implementation is still ongoing, and we also plan to
apply the implementation to larger programs.

Chapter 5 presents verification algorithms that check whether the program
execution under the control of a given scheduler is secure. In case the program
leaks information, counter-example algorithms in Chapter 6 provide us the in-
formation about how and why a program fails a security requirement. Besides,
it is also necessary to know how much information has been revealed during the
execution. This will be discussed in the next part of this thesis.
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Quantitative Information
Flow Analysis
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Chapter 8

Programs with Low Input
and Noisy Output

8.1 Introduction

Qualitative information flow analysis aims to determine whether a program leaks
private information or not. Thus, these absolute security properties always
reject a program if it leaks any information. Quantitative information flow
analysis offers a more general security policy, since it gives a method to tolerate
a minor leakage, i.e., by computing how much information has been leaked and
comparing this with a threshold. By adjusting the threshold, the security policy
can be applied for different applications, and in particular, if the threshold is 0,
the quantitative policy is seen as a qualitative one.

Classical quantitative information flow analysis uses concepts from informa-
tion theory to model information flow [64, 28, 22, 62, 61, 99, 84, 9]. It considers
a system as an information-theoretic channel with private data as the only in-
put and public data as the output. The classical analysis studies the amount of
private data that an attacker can learn from the public-data observation.

This chapter extends the classical context by considering systems where an
attacker is able to influence the initial values of public data. This is a popular
kind of systems with many real-world applications, e.g., login systems, password
checkers, or banking system. For these systems, the initial low values are also the
input of the channel that models the system, i.e., these systems contain both
private and initial public inputs. Therefore, the classical approaches are not

123
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appropriate to analyze this scenario. This chapter adapts the classical view of
information-theoretic channels to analyze quantitatively the security of systems
containing both high and low inputs. Our analysis also proposes a new measure
of information leakage that is based on Cachin’s definition of conditional-min
entropy.

Additionally, we show that our measure also can be used to reason about
the case where a system operator on purpose adds noise to the output, instead
of always producing the correct output. The noisy outcome is used to reduce
the correlation between the output and the input, and thus, to increase the
remaining uncertainty about the secret. However, even though adding noise
to the output enhances security, it reduces the reliability of the program. We
show how given a certain noisy output policy, the increase in security and the
decrease in reliability can be quantified.

Organization of the chapter. Section 8.2 presents our setting for the
analysis. Then, Section 8.3 and Section 8.4 discuss the classical analysis and
its shortcomings. Section 8.5 presents our quantitative security analysis model
for programs that contain both low and high input, and its application. The
next two sections discuss when negative information flow is expected, and how
to construct and evaluate a noisy-output policy. Section 8.8 discusses related
work, while Section 8.9 concludes.

Origins of the chapter. The content of this chapter was published in the
proceedings of the 6th International Conference on Engineering Secure Software
and Systems (ESSoS’14) [67].

8.2 Basic settings for the analysis

To aim for simplicity and clarity, rather than full generality, following the tradi-
tional approaches [84, 4], our models of analysis are based on the following basic
settings. First, we assume that programs always terminate, and the attacker
knows the source code of the program. We restrict to programs with just a
single high security input S and a single low security input Lin . Since the high
security output is irrelevant, programs only give a low security outcome O . Our
goal is to quantify how much information about S is deduced by the attacker
who can influence Lin , and observe the traces of O . We also assume that the
sets of possible values of data are finite, as in the traditional approaches.
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Secondly, we assume that there is a priori, publicly-known probability dis-
tribution on the high values. We also assume that data at the same security
level are indistinguishable in the security meaning. Thus, a system that leaks
the last 9 bits of private data is considered to be just as dangerous as a system
that leaks the first 9 bits1.

Finally, we consider the one-try guessing model, i.e., after observing the
public outcomes, the attacker is allowed to guess the value of S by only one
try. This model of attack is suitable to many security situations where systems
trigger an alarm if an attacker makes a wrong guess. For the password checker,
this one-try guessing model can be understood as that an attacker is only allowed
to try once. If the entered string is not the correct password, the system will
block the account.

Notice that these restrictions aim to demonstrate our core idea. However,
the analysis might adapt to more complex situations easily after some trivial
modifications.

8.3 Classical models of quantitative security
analysis

Classical quantitative security analysis [64, 28, 22, 62, 61, 99, 84, 9] proposes to
use information theory as a setting to model information flow, and to define the
quantity of information leakage. The common idea of these approaches is that
a system is considered as a channel in the information-theoretic sense.

Formally, an information-theoretic channel M is a triple M = (X,Y,M),
where X represents a finite set of secret values as the input, Y represents a
finite set of observable outcomes as the output, and M is a |X| × |Y| channel
matrix that contains the conditional probabilities p(y|x) for each x ∈ X and
y ∈ Y. Thus, each entry of M is a real number between 0 and 1, and each row
sums to 1.

Summarizing, classical quantitative security analysis models a program as
a standard input-output channel with the secret S as the input and the public
outcome O as the output. The analysis studies how much information about S
an attacker might learn from the output O .

1These assumptions follow the traditional analysis.
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8.3.1 Entropy

The quantitative analysis of information flow is based on the notion of entropy.
The entropy of a random private variable expresses the uncertainty of an at-
tacker about its value, i.e., how difficult it is for an attacker to discover its value.
Thus, the entropy of a private value expresses the uncertainty of an attacker
about its correct value. So far, most of the approaches were based on Shannon
entropy [64, 28, 22, 62, 61, 99] and Rényi’s min-entropy with Smith’s version
of conditional min-entropy [84, 9]. Various definitions of entropy are given as
follows.

Let X and Y denote two discrete random variables. Let p(X = x) denote
the probability that X = x, and let p(X = x|Y = y) denote the conditional
probability that X = x when Y = y.

Shannon entropy

Definition 8.1 The Shannon entropy of a random variable X is defined as,

HShannon (X) = −
∑
x∈X

p(X = x) log p(X = x),

where the base of the logarithm is set to 2 [4].

Definition 8.2 The conditional Shannon entropy of a random variable X given
Y is,

HShannon (X|Y ) =
∑
y∈Y

p(Y = y)HShannon (X|Y = y),

where HShannon (X|Y = y) = −∑
x∈X p(X = x|Y = y) log p(X = x|Y = y).

It is possible to prove that 0 ≤ HShannon (X|Y ) ≤ HShannon (X). The min-
imum value of HShannon (X|Y ) is 0, if X is completely determined by Y . The
maximum value of HShannon (X|Y ) is HShannon (X), when X and Y are inde-
pendent [4].

Min-entropy

Definition 8.3 The Rényi’s min-entropy of a random variable X is defined as
[84]: HRényi (X) = − log maxx∈X p(X = x).
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Notice that Shannon entropy and Rényi’s min-entropy coincide on uniform dis-
tributions.

Rényi did not define the notion of conditional min-entropy, and there are
different definitions of this notion.

Definition 8.4 (Smith’s version of conditional min-entropy [84]) The
conditional min-entropy of a random variable X given Y is,

HSmith (X|Y ) = − log
∑
y∈Y

p(Y = y) ·max
x∈X

p(X = x|Y = y).

Various researchers, including Cachin, have considered the following definition:

Definition 8.5 (Cachin’s version of conditional min-entropy [21]) The
conditional min-entropy of a random variable X given Y is,

HCachin (X|Y ) = −
∑
y∈Y

p(Y = y) · log max
x∈X

p(X = x|Y = y).

Example 8.1 Given a discrete random variable X with the priori distribution
π = {p(X = x1) =

2
3 , p(X = x2) =

1
6 , p(X = x3) =

1
6}. Thus,

HShannon (X) = −( 23 log
2
3 + 1

6 log
1
6 + 1

6 log
1
6 ), and

HRényi (X) = − log 2
3 .

Suppose that the channel (matrix) M is as follows,

M y1 y2
x1 1/2 1/2
x2 1/6 5/6
x3 0 1

The channel M and the distribution π determine the joint probability matrix
J , where J [xi, yj ] = π(xi) ·M [xi, yj ].

M y1 y2
x1 1/3 1/3
x2 1/36 5/36
x3 0 1/36
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The joint probability matrix J determines the distribution of Y , i.e., p(Y =
yj) =

∑
∀xi J [xi, yj ]. Thus, p(Y = y1) = 1

3 + 1
36 + 0 = 13

36 , and p(Y = y2) =
1
3 + 5

36 + 1
6 = 23

36 .

Since p(X = xi|Y = yj) =
J[xi,yj ]
p(Y=yj)

, we have

p(X = x1|Y = y1) =
12

13
, p(X = x2|Y = y1) =

1

13
, p(X = x3|Y = y1) = 0, and

p(X = x1|Y = y2) =
12

13
, p(X = x2|Y = y2) =

5

23
, p(X = x3|Y = y3) =

6

23
.

Therefore, various measures of conditional entropy are given as follows,

HShannon (X|Y ) = − 13
36 · ( 1213 log 12

13 + 1
13 log

1
13 )

− 23
36 · ( 1223 log 12

23 + 5
23 log

5
23 + 6

23 log
6
23 )

HSmith (X|Y ) = − log( 1336 · 12
13 + 23

36 · 12
23 )

HCachin (X|Y ) = −( 1336 log
12
13 + 23

36 log
12
23 )

8.3.2 Quantity of information leakage

Suppose that a program C is modeled as a channel matrix M with S as the
input and O as the output. The leakage of C is defined as the difference be-
tween the uncertainty of the attacker about S before executing the program and
his uncertainty after observing O . Let H(S ) denote the initial uncertainty of
the attacker, and H(S |O) denote the uncertainty after the program has been
executed and the public outcomes are observed. Therefore, the quantity of
information leakage of C is given by,

L(C) = H(S )−H(S |O),

where L(C) denotes the leakage of C; H might be either Shannon entropy or
min-entropy with Smith’s version of conditional min-entropy. The quantity of
information leakage is measured in bit.

In this chapter, we let LShannon denote the leakage computed with Shannon
entropy, and LSmith denote the leakage computed by using min-entropy with
Smith’s version of conditional min-entropy.
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8.4 Shortcomings of the classical models

8.4.1 Counter-intuitive and conflict results

Many authors measure leakage using Shannon entropy. However, Smith shows
that in the context of the one-try guessing model, a measure based on Shan-
non entropy does not always result in a very good operational security guaran-
tee [84]. In particular, Smith argues that Shannon-entropy measure might be
counter-intuitive by showing two programs C and C ′ such that by intuitive un-
derstanding, C leaks more information than C ′, but Shannon-entropy measures
yield counter-intuitive results, i.e., LShannon (C) < LShannon (C ′). For example,
consider the two following programs C1 and C2 and their values of leakage,
based on Shannon-entropy measure, from [84].

Example 8.2 (Program C1)

if (S mod 8 = 0) then O := S else O := 1;

Basically, C1 copies S to O when S is a multiple of 8, otherwise, it sets O to
1. Assume that S is a 64-bit unsigned integer, 0 ≤ S ≤ 264 − 1, with the priori
uniform distribution. Thus, the attacker’s initial uncertainty is given by,

HShannon (S ) = −∑
s∈{0,...,264−1} p(S = s) log p(S = s)

= −∑
s∈{0,...,264−1}

1
264 log

1
264

= −264 1
264 log

1
264 = 64 .

This program is deterministic, thus for each possible value of S , the execution
of C1 results in only one O . Among 264 possible values of S , 261 values give the
output O = S . There are 264 − 261 = 7 · 261 inputs that map O to 1. Thus,

p(O = 1) = 7·261
264 = 7

8 .
If the value O is different from 1, the secret is revealed, i.e., p(S = s|O =

s) = 1. When O is equal to 1, the attacker only knows that S is not a multiple
of 8, i.e., the last 3 bits of S are not all zeros. Thus, if O = 1, among 7 · 261
possible uniformly-distributed values of S , the probability that the guess of the
secret value is correct is p(S = s|O = 1) = 1

7·261 . Therefore,

HShannon (S |O) = 261 · 1
264 (− log 1) + 7

8 (− log 1
7·261 )

= 55.83 .
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Hence, according to Shannon-entropy measure, the leakage of C1 is,

LShannon (C1) = HShannon (S )−HShannon (S |O) = 64− 55.83 = 8.17.

Example 8.3 (Program C2)

O := S & (0 . . . 0.111.111.111)b;

where (0 . . . 0.111.111.111)b is the 64-bit binary number such that the first 55
bits are 0 and the last 9 bits are 1.

This program simply copies the last 9 bits of S into O . Shannon-entropy mea-
sure gives LShannon (C2) = 9.

In C1, whenever the public outcome O �= 1, the attacker obtains the secret
S completely. Thus, the expected probability of guessing S correctly is greater
than 261 · 1

264 = 1
8 . In C2, for any value of O , the probability of guessing S

correctly by one try is 1
255 , since the first 55 bits of S are still unknown. It means

that, in the one-try threat model, intuitively, C1 is considered more dangerous
than C2. However, the measure based on Shannon entropy judges C2 worse
than C1.

For this reason, Smith develops an alternative theory of quantitative infor-
mation flow based on min-entropy [84]. Smith defines uncertainty in terms of
the vulnerability of S to be guessed in one try. The vulnerability of a random
variable X is the maximum of the probabilities of the possible values of X. This
approach seems to match the intuitive idea of the one-try guessing model, i.e.,
the attacker always chooses the value with the maximum probability.

However, also min-entropy measures might result in counter-intuitive values
of leakage. Consider the two following programs C3 and C4, from [84, 97].

Example 8.4 (Program C3: Password Checker (PWC))

if (S = Lin) then O := 1 else O := 0;

where S denotes the password, Lin the string entered by the attacker, and O the
observable answer, i.e., right or wrong.

Assume that S is an unsigned integer with the priori uniform distribution.
Thus, HRényi (S ) = − log 1

|S | = log |S |, where |S | is the number of possible

values of S . If the output O = 1, the attacker obtains the password, i.e.,
p(S = Lin |O = 1) = 1. If O = 0, the probability that the attacker can
guess the correct password by one try is p(S = s|O = 0) = 1

|S |−1 . Generally,
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the probability that the string Lin matches the password p(O = 1) is 1
|S | .

Hence, p(O = 0) = |S−1|
|S | . Thus, according to Smith’s conditional min-entropy,

HSmith (S |O) = − log( 1
|S | · 1 +

|S−1|
|S | · 1

|S |−1 ) = log |S | − 1. Therefore,

LSmith (C3) = HRényi (S )−HRényi (S |O) = 1.

Example 8.5 (Program C4: Binary Search)

if (S ≥ Lin) then O := 1 else O := 0;

where S is with the same size as in C3, and Lin = |S |/2 is a program parameter.

For this example, p(O = 1) = p(O = 0) = 1
2 , and p(S = s|O = 1) = p(S =

s|O = 0) = 1
|S |/2 . Thus, HSmith (S |O) = log |S | − 1. Therefore,

LSmith (C4) = HRényi (S )−HRényi (S |O) = 1.

Thus, measure proposed by Smith does not distinguish between C3 and C4
by always judging that their leaks are the same. However, if |S | is large, the
probability that S = Lin becomes so low in C3, i.e., p(O = 1) = 1

|S | ≈ 0. Thus,

intuitively, C3 leaks almost nothing, since the chance of guessing S correctly
after observing the outcome is 1

|S |−1 ≈ 1
|S | . Program C4 always leaks 1 bit

of information, since the chance of the correct guessing based on the public
outcome is 2

|S | . Thus, program C4 should be judged more dangerous than C3.

In his paper [84], Smith also admits that C3 and C4 should not be treated the
same. It is trivial that the uncertainty of the password guessing decreases slowly,
while in binary search, the uncertainty of the secret decreases very rapidly.

Notice that LShannon (C3) = 0 and LShannon (C4) = 1. This indicates that
for these examples, Shannon-entropy measure matches the intuition. Therefore,
we agree with Alvim et al. that no single leakage measure is likely to suit all
cases [7].

8.4.2 Leakage in intermediate states

Classical approaches often consider only the leakage in the final states of the
execution. However, to make a suitable model of analyzing quantitatively infor-
mation flow, it is necessary to take into account also the leakage in intermediate
states along the execution traces. Consider the following example where S is a
3-bit binary number.
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Example 8.6 (Program C5) Given that (100)b and (011)b are the binary
forms of 4 and 3, respectively.

O := 0;
O := S & (100)b;
O := S & (011)b;

Let (s3s2s1)b denote the binary form of S . The analysis based only on the
final-state observation judges that C5 leaks 2 bits of private data, i.e., O =
(s3s2s1)b & (011)b = (0s2s1)b. However, it is clear that this program leaks
the secret completely, i.e., due to the leakage in the intermediate state, i.e.,
O = (s3s2s1)b & (100)b = (s300)b.

Thus, an appropriate model of quantitative security analysis needs to con-
sider the leakage given by a sequence of publicly observable data obtained during
the program execution. However, notice that the leakage in intermediate states
does not always contribute to the overall leakage of a trace, as in the following
example,

Example 8.7 (Program C6)

O := 0;
O := S & (001)b;
O := S & (011)b;

The overall leakage of this program trace is only 2 bits, since the leakage
in the intermediate state, i.e., the last bit s1, is included in the leakage in the
final state. This example shows that leakage of a program trace is not simply
the sum of the leakage of transition steps along the trace, as in the approach of
Chen et al. [26].

8.5 Analytical model for programs that contain
low input

8.5.1 Leakage of programs with low input

The only input of the information-theoretic channel is the secret. For programs
where an attacker might influence the initial value of the low variable, the initial
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low value is also an input of the channel modeling the program. To apply the
traditional channel for the analysis, we propose to model such a program by a
set of channels. Each channel corresponds to the model of the program where
the low input is assigned a certain value. Thus, in our approach, the initial low
value is considered as a parameter. Since we assume that the low value set is
finite, the set of channels is also finite.

We see a channel as a test. We run the analysis on the set of tests. Since
the attacker knows the program code, and is also able to influence the initial
low value, he knows which test would give him more secret information. Thus,
we define the leakage of the program that contains low input as the maximum
leakage over all tests.

Given a program C that contains a low input Lin . Let π denote the priori
distribution on the possible values of the private data, and LVal denote the
value set of Lin . Let T |O denote a trace of O obtained from the execution of C.
To define the leakage of C, our approach carries out the following steps.

Leakage of Programs with Low Input
1: Set up a test (P, π,Lin):

1.1: Choose a value for Lin .
1.2: Construct a channel where S is the input, Lin is the parameter

of the channel, and the traces T |O are the output.
2: Compute the leakage of the test (P, π,Lin):

L(P, π,Lin) = HRényi (S )−HCachin (S |Lin , T |O ),
where HRényi (S ) is the min-entropy of S corresponding to π.

3: Define the leakage of P as: L(P, π) = maxLin∈LVal L(P, π,Lin).

Notice that Step 1 and 2 are repeated for all values of Lin .

Measures of uncertainty. Since we follow the one-try guessing model, the
initial uncertainty is computed by Rényi’s min-entropy of S with the priori dis-
tribution π. In our approach, we propose to use Cachin’s version of conditional
min-entropy (Definition 8.5) as a new measure for the remaining uncertainty,
instead of Smith’s version. To the best of our knowledge, this measure has not
previously been used in the theory of quantitative information flow.

In the remainder of this chapter, to denote our measure, we use the notation
LCachin to distinguish it from the measure proposed by Smith.
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8.5.2 Case studies

Below, we analyze some case studies, and compare Smith’s measure with our
measure. We show that our measure agrees more with the intuition.

Password Checker. Consider the following PWC.

if (S = Lin) then O := 1 else O := 0;

where S might be A1, A2, or A3, with π = {p(A1) = 0.98, p(A2) = 0.01, p(A3) =
0.01}. Since the attacker tests Lin based on the value of S , there are 3 corre-
sponding tests, i.e., Lin = A1, Lin = A2, or Lin = A3. The leaks of the tests
Lin = A2 and Lin = A3 are the same. Hence, we only analyze Lin = A1 and
Lin = A2.

Before interacting with the PWC, the attacker believes that the password is
A1, since p(A1) dominates the other cases. Thus, in both tests, the attacker’s
initial uncertainty about S is HRényi (S ) = − log 0.98 = 0.02915.

When Lin = A1, the PWC is modeled by the following channel matrix M ,

M O = 1 O = 0
S = A1 1 0
S = A2 0 1
S = A3 0 1

The channel M and the distribution π determine the joint probability matrix
J , where J [s, o] = π(s) ·M [s, o].

J O = 1 O = 0
S = A1 0.98 0
S = A2 0 0.01
S = A3 0 0.01

The joint probability matrix J determines a marginal distribution of O , i.e.,
p(O = 1) = 0.98 and p(O = 0) = 0.02.

Since p(S = s|O = o) = J[s,o]
p(o) , we have

p(S = A1|O = 1) = 1, p(S = A2|O = 1) = p(S = A3|O = 1) = 0, and

p(S = A1|O = 0) = 0, p(S = A2|O = 0) = p(S = A3|O = 0) = 0.5.

Therefore, LCachin (C, π,A1) = 0.00915, while LSmith (C, π,A1) = 0.01465.

When Lin = A2, we obtain the following channel,
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M O = 1 O = 0
S = A1 0 1
S = A2 1 0
S = A3 0 1

Thus, p(O = 1) = 0.01 and p(O = 0) = 0.99, and

p(S = A1|O = 1) = p(S = A3|O = 1) = 0, p(S = A2|O = 1) = 1, and

p(S = A1|O = 0) = 0.9899, p(S = A2|O = 0) = 0, p(S = A3|O = 0) = 0.0101.

Therefore, LCachin (C, π,A2) = 0.01465, while LSmith (C, π,A2) = 0.01465.
The measure proposed by Smith judges that the leakage values of the two

tests where Lin = A1 and Lin = A2 are the same. However, this contradicts
the intuition. In the test Lin = A1, if the PWC answers yes, it only helps
the attacker to confirm something that he already believed to be certainly true.
However, if the answer is O = 0, it does not help the attacker at all, i.e., he still
does not know whether either A2 or A3 is more likely to be the password, since
the posteriori probability p(S = A2|O = 0) is still equal to p(S = A3|O = 0).

Intuitively, the test Lin = A2 helps the attacker to gain more secret infor-
mation. If O = 1, it completely changes the attacker’s priori belief, i.e., the
password is not A1, and it also confirms a very rare case, i.e., the password is
A2. If O = 0, this even strengthens what the attacker’s belief about the secret,
since the posteriori probability p(S = A1|O = 0) = 0.9899 increases. The anal-
ysis should indicate that the test Lin = A2 leaks more information than the test
Lin = A1.

Thus, in this example, our measure gives results that match more the intu-
ition. The leakage of this PWC is defined as the leakage of the test Lin = A2.
This example also shows that the test in which the attacker sets the low input
based on the value that he believes to be the secret is not always the “best
test”. Since the attacker knows the source code of the program and the priori
distribution of the private data, he knows which test would give him the most
information. This is the reason that we define the leakage of a program with
low input as the maximum leakage over all tests.

In the general case, given π = {p(A1) = a, p(A2) = b, p(A3) = c}, whenever
a > c and b > c, Smith’s measure cannot distinguish between the test Lin = A1

and Lin = A2, while our measure can, and also agrees more with the intuition
about what the leakage should be.
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A Multi-threaded Program. Consider the following example,

Example 8.8

O := 0;
{if (O = 1) then O := S/4 else O := S mod 2}

∣∣∣∣O := 1;
O := S mod 4;

where S is a 3-bit unsigned integer with the priori uniform distribution.

The execution of this program results in the following traces, depending on
whether thread C1 or C2 is picked first:

S 0 1 2 3 4 5 6 7

T |O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

Consider a uniform scheduler, i.e., a scheduler that picks threads with equal
probability. It is clear that the last command O := S mod 4 always reveals
the last 2 bits of S . The first bit might be leaked with probability 1

2 , depending
on whether the scheduler picks thread C2 first or not. Thus, with the uniform
scheduler, intuitively, the real leakage of this program is 2.5 bits.

By observing the traces ofO , the attacker is able to derive secret information.
For example, if the trace is 0100, the attacker can derive S precisely, since this
trace is produced only when S = 0. If the trace is 0010, the attacker can conclude
that S is either 0 or 4 with the same probability, i.e., 1

2 . If the trace is 0111,
the possible value of S is either 1 or 5, but with different probabilities, i.e., the
chance that S is 5 is 2

3 . There are 6 traces such that the attacker is able to derive
the value of S precisely from them. There are 4 traces such that the attacker is
able to guess S correctly with the probability 1

2 , and 6 traces with the probability
2
3 . Therefore, LCachin (C, π) = 3− (−( 6

16 · log 1 + 4
16 · log 1

2 + 6
16 · log 2

3 )) = 2.53,
while LSmith (C, π) = 3− (− log( 6

16 · 1 + 4
16 · 1

2 + 6
16 · 2

3 )) = 2.58.
Consider a scheduler that picks thread C2 first with probability 3

4 . With
this scheduler, the real leakage of this program is 2.75. Our measure gives
LCachin (C, π) = 2.774, while LSmith (C, π) = 2.807. If the scheduler picks thread
C2 first with probability 1

4 , LCachin (C, π) = 2.271, while LSmith (C, π) = 2.321.
Of course in this case, the real leakage is 2.25. These results show that our
measures are closer to the real leakage values.



8.6. Noisy output 137

These case studies show that our measure is more precise than the classical
measure given by Smith’s conditional min-entropy. The main difference between
the two measures is the position of log in the expression of the remaining entropy.
The idea of using logarithm is to express the notion of uncertainty in bits. Thus,
the log should apply only to the probability of the guess, which represents the
uncertainty of the attacker, as in our approach. Our measure distinguishes
between the probabilities of the observable and the probabilities of the guess
based on the observable. In Smith’s measure, the logarithm applies to the
combination of the two probabilities, and does not distinguish between them,
which might cause imprecise results.

However, as a side remark, we emphasize that no unique measure is likely
to be suitable for all cases. We believe that for some examples, measures based
on Shannon entropy or Smith’s version of conditional min-entropy might match
better the real values of leakage. Thus, it would be interesting (as future work)
to evaluate each measure to draw up a guideline indicating which measure to
apply to which scenario.

8.6 Noisy output

8.6.1 Adding noise to the output

In relation to defining an appropriate measure for information flow quantifica-
tion, this thesis also discusses a claim of the classical quantitative information
flow theory, i.e., a quantitative measure of information leakage should return
a non-negative value. The common idea is that the program’s public-outcome
observation would enhance the attacker’s knowledge about the secret, and conse-
quently reduce his initial uncertainty. Therefore, classical analysis often expects
that the value of leakage should not be negative.

However, we think that this non-negativeness property does not always hold.
For some applications, to enhance the confidentiality, the system operator adds
noise secretly to the output, i.e., sometimes, the system might generate a wrong
outcome, instead of the exact one, as in the following example.

Consider a deterministic system (program) C where the secret might be A1,
A2, or A3 with the priori uniform distribution π = {p(A1) = p(A2) = p(A3) =
1
3}. The system C might produce three low outcomes Z1, Z2, and Z3 as described
by the following channel matrix M .
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M O = Z1 O = Z2 O = Z3

S = A1 1 0 0
S = A2 0 1 0
S = A3 0 0 1

Since the attacker knows the program code, he is able to construct M in
his database. The system is deterministic, i.e., the public outcomes are totally
dependent on the secret; thus, the attacker can obtain the private data entirely.
For example, if the outcome is Zi, the attacker knows for sure that S = Ai.

To protect the private data, the system operator might mislead the attacker
by a noisy-output policy (policy for short), i.e., adding noise to the output of
the system via some output-perturbation mechanism based on randomization.
Thus, the channel modeling the system is secretly changed by the policy, i.e.,
the system is now described by the following channel matrix M ′.

M ′ O = Z1 O = Z2 O = Z3

S = A1
5
6

1
6 0

S = A2 0 3
4

1
4

S = A3
1
3 0 2

3

The noisy-output policy is kept in secret, i.e., the attacker does not know
that the security policy has been applied to the system. Thus, the attacker still
thinks that the system is M , but in fact, the real system is M ′.

Therefore, the posteriori distribution in the attacker’s database is not correct
anymore, e.g., for the outcome Zi, p(S = Ai|O = Zi) = 1 is not the real
posteriori probability. The real posteriori distribution ensures that his guess is
not 100% correct.

The noisy outcomes might mislead the attacker’s belief about the secret,
i.e., the attacker’s final uncertainty is increased. As a consequence, the value
of leakage might be negative. This idea is illustrated more by the following
example.

8.6.2 Negative information flow

Password checker with noisy outcomes. Consider the example of PWC
in Section 8.5.2. We assume that a system operator has changed its behavior
secretly, i.e., the real PWC is a probabilistic PWC where some perturbation
mechanism has been applied to the output,

if (S = Lin) then {O := 1 0.9[]O := 0} else {O := 0 0.9[]O := 1};



8.7. Noisy-output policy 139

In this version, the exact answers are reported with probability 0.9, i.e., when
S = Lin , O = 1 is reported with probability 0.9, and O = 0 with probability
0.1. Consider the test Lin = A2, the real channel M ′ is as follows,

M ′ O = 1 O = 0
S = A1 0.1 0.9
S = A2 0.9 0.1
S = A3 0.1 0.9

Notice that the attacker still thinks that the system is M , but in fact, the real
system is M ′. Based on π and M ′, the computation gives the real distribution
of O , i.e., p(O = 1) = 0.108 and p(O = 0) = 0.892, and the real posteriori
probabilities p(S = A2|O = 1) = 0.083 and p(S = A1|O = 0) = 0.9887.

Before observing the outcome, the attacker’s belief that the password is A1

has 98% chance of being correct. If the outcome is O = 0, the real posteriori
probability gives the attacker’s guess, i.e., S = A1, a 98.87% chance of being
correct. This is almost the same as the guess without the outcome observa-
tion. When O = 1, the attackers guesses S = A2, since his database tells
that this guess has the highest chance to be correct. However, the real posteri-
ori probability ensures that his guess only has a 8.3% chance of being correct.
Therefore, the outcomes of the program not only reveal no secret information,
but also cause him to decide wrongly. Therefore, intuitively, this is a negative
information flow.

As we expected, our measure indicates a negative leakage: LCachin (C, π,A2)
= − log 0.98+(0.108 log 0.083+0.892 log 0.9887) = −0.37, while LSmith (C, π,A2)
= −0.137. Notice that the leakage is determined by the real probability of
success, not by the probability in the attacker’s database.

To the best of our knowledge, we think that this observation of negative
information flow has not been reported in the literature. We believe that this
property would change the classical view of how the measure of uncertainty
should be, i.e., we do not need to avoid measures that do not guarantee the
non-negativeness property.

8.7 Noisy-output policy

The noisy outcomes change the behavior of the system, i.e., they change the
channel matrix M that models the system (the public channel matrix that
the attacker also knows) to M ′ (the real channel matrix that is kept secret).
The noisy outcomes should be generated in such a way that they change the
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original channel, but still preserve a certain level of reliability, e.g., the above
probabilistic PWC works properly in 90% of the time. Totally random outcomes
might achieve the best confidentiality, but these outcomes are practically useless.
Besides, the noisy-output policy also needs to satisfy some general requirements
that, on the one hand, help to mislead the attacker, i.e., the attacker does not
know that the system has been changed by the policy; thus, he still uses the
posteriori distributions based on M and π to make a guess, and on the other
hand, reduce the leakage. This section discusses how to design such an efficient
noisy-output policy.

8.7.1 Design a policy

Given a system C that is described by a channel matrixM of size n×m, e.g., the
set of secret input values is {A1, · · · ,An}, and the set of observable outcomes
is {Z1, · · · ,Zm}.

General requirements. Since the attacker knows π and M , he is able to
compute the marginal distribution of the output. Thus, firstly, the distribution
of the output has to be preserved by the channel matrix M ′, where the noise
has been added. If the policy does not preserve this distribution, the attacker
might find out that the channel M has been changed, and he will try to study
the system before making a guess, i.e., trying to get the real program code of
the system.

Secondly, for each outcome Zi, assume that p(S = Aj |Zi) is the maxi-
mum posteriori probability, then p′(S = Aj |Zi) is also the maximum pos-
teriori probability, i.e., the maximum property of the posteriori distributions
has to be preserved. For example, if M gives a posteriori distribution where
p(S = Aj |Zi) = 0.8, then the real posteriori probability given by M ′ might be
p(S = Aj |Zi) = 0.6. Thus, if the outcome is Zi, the attacker thinks that the
guess S = Aj has a 80% chance to be correct. However, in reality, this guess
only has a 60% chance of success. Notice that p(S = Aj |Zi) does not need to
be equal to p′(S = Aj |Zi).

The preservation of the maximum property of the posteriori distribution
is necessary. Consider a uniform posteriori distribution {p(S = A1|Zi) =
p(S = A2|Zi) = p(S = A3|Zi) = 1

3} in the attacker’s database. Following
the requirement, the posteriori distribution given by M ′ has to be also uni-
form. If we do not require this, then the real distribution might possibly be
{p′(S = A1|Zi) = 0.2, p′(S = A2|Zi) = 0.7, p′(S = A3|Zi) = 0.1}. According to
his database, the attacker might guess S = A2, since all three guesses have the
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same chance of being correct. In this case, the real probability would increase
the chance of success, and thus, increase the leakage.

Reliability. Reliability of a system is the probability that a system will
perform its intended function during a specified period of observation time. Let
Ri (Ri ≤ 1) denote the reliability corresponding to the secret value Ai, i.e., the
probability that the system will produce correct outcomes when the secret is
Ai. Thus, the overall reliability of the system C is RP =

∑
i p(Ai) · Ri. The

noisy-output policy produces noise, and thus, it reduces the reliability of the
system. Therefore, we require that a noisy-output should guarantee at least a
certain level of reliability.

Noisy-output policy. We propose a simple policy that might reduce the
unwanted information flow, while still preserving a certain level of reliability.
The following policy only aims to demonstrate the core idea of what a noisy-
output policy should be. The practical policy might be customized due to
requirements of the application. Given a channel matrix M that models a
system C. A noisy-output policy changes M to M ′ by choosing an appropriate
set of {R1, · · · ,Rn}.

Noisy-output policy

1: For each row i of M , multiply each entry of the row by the reliability
variable Ri. Choose randomly one of the smallest entries, and add the
value 1−Ri to it. Denote this modified matrix by M ′.

2: Choose an overall reliability value that the policy has to guarantee, e.g.,
Rmin. Establish an inequality:

∑
i p(Ai) · Ri ≥ Rmin.

3: For any outcome Zi, let p(O = Zi) denote the probability determined
by π and M , and p′(O = Zi) determined by π and M ′, establish an
equation: p(O = Zi) = p′(O = Zi).

4: For each outcome Zi, if ∀k.p(S = Aj |Zi) ≥ p(S = Ak|Zi), then establish
the following condition: ∀k. p′(S = Aj |Zi) ≥ p′(S = Ak|Zi).

5: Solve these equations and inequalities. The set {R1, · · · ,Rn}, are
chosen in such a way that the leakage given by M ′ is close to zero, and
the reliability of the system RP is as high as possible.

Notice that in Step 1, the sum of all entries of a row has to be 1; thus we have
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to add the value 1−Ri to one of its entries. Step 3 establishes a set of equations,
i.e., m−1 independent equations that correspond to m−1 observable outcomes,
that preserve the output distribution. We also obtain (n− 1) ·m inequalities in
Step 4, that preserve the maximum property of the posteriori distributions.

There always exists a trivial solution R1 = · · · = Rn = 1, i.e., M and M ′

are identical. When there are multiple solutions, we choose one that gives low
leakage, but a high overall reliability. However, this does not always happen.
A solution that guarantees a very low value of leakage might also give a low
reliability. In fact, a negative leakage, i.e., when the attacker decides wrongly
based on the observable outcomes, is not always necessary. The goal of the
policy is to ensure that the attacker cannot gain knowledge from the observable
outcomes. Thus,R1, · · · ,Rn are chosen such that the leakage is close to zero and
the overall reliability gets a high value. Next, we show an important property
of our policy.

Theorem 8.1 Given a priori distribution π and a channel matrixM , the chan-
nel matrix M ′ modified from M by a noisy-output policy always gives a leakage
quantity that is not greater than the one given by M .

Proof: For any outcome Zi, assume that the maximum likely secret is
Aj . Since p′(Zi) = p(Zi) and p′(S = Aj |Zi) = Rj · p(S = Aj |Zi), thus
−p′(Zi) log p

′(S = Aj |Zi) ≥ −p(Zi) log p(S = Aj |Zi). Therefore, the value
of remaining uncertainty given by π and M ′ is greater than or equal to the one
given by π and M . As a consequence, the corresponding leakage quantity is
reduced. �

8.7.2 Example

Section 8.6.1 presents an example idea with noisy outcomes. However, the
outcomes in this example do not follow a policy. Thus, the general requirements
are not preserved. This section illustrates how noisy outcomes are designed. We
consider the same channel M with the same priori uniform distribution π.

Based on π and M , the attacker knows that p(O = Z1) = p(O = Z2) =
p(O = Z3) =

1
3 . If O = Zi, the attacker will guess S = Ai, since p(S = Ai|O =

Zi) is the maximum probability.

Following the idea of a noisy-output policy, to protect the secret, a system
operator might mislead the attacker by adding noise to the output, i.e., the real
system is M ′.
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M ′ Z1 Z2 Z3

S = A1 R1 1−R1 0
S = A2 0 R2 1−R2

S = A3 1−R3 0 R3

To preserve the output distribution, the following equations have to be sat-
isfied:

1

3
R1 +

1

3
(1−R2) = 1

3

1

3
(1−R1) +

1

3
R2 = 1

3

Simplifying them, we obtain R1 = R2 = R3.
The maximum property of the posteriori distributions determines that 1

2 ≤
R1,R2,R2 ≤ 1. For this example, the reliability of the system is RP = R1,
and LCachin (C, π) = LSmith (C, π) = log 3R1.

Thus, a high value of R1, which guarantees a high overall reliability, also
gives a high value of leakage. If the goal is to reduce the leakage, we might choose
R1 = R2 = R3 = 1

2 , which gives the smallest value of leakage, i.e., log 3
2 , but

also a very low reliability. If a high reliability is required, R1 = R2 = R3 = 2
3

might be a good choice.
Consider the PWC example, for the test Lin = A2, following the policy,

we can choose R1 = 0.995,R2 = 0.5,R3 = 0.99 to have LCachin (C, π,A2) =
−0.00275 with the reliability R = 0.99. However, if we consider both tests, i.e.,
Lin = A1 and Lin = A2, R1 = R2 = R3 = 1.

As mentioned above, a noisy-output policy enhances the security, but reduces
the reliability of a system, i.e., the system does not always work in a proper way.
However, the drawback of the reduced reliability can be overcome. Consider
a situation of the PWC in which an user or an attacker provides a correct
password, but the system rejects it, and then blocks his account — according to
the one-try model. If this context is for the attacker, it would be very nice, since
the attacker does not have a chance to use the account again. If this context
is for the real user, the situation is different from the one for the attacker: the
user is still allowed to reactivate the account by contacting the company/website
administrators and proving that he is the real owner of the account, while the
attacker cannot do the same.

The other way around, i.e., when the system accepts a wrong password, is
not nice for the security. This is the reason that the policy should guarantee a
high reliability. Notice that in this scenario, the system accepts the login, but no
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private information has been leaked, since the attacker still does not know the
correct password. Thus, in the next login, there is a high chance that the system
will reject this wrong password. Moreover, to avoid the situation of accepting a
wrong password, the system might also implement the two-factor authentication,
i.e., in addition to asking for something that only the user knows (e.g., user-
name, password, PIN), the system also requires something that only the user has
(e.g., ATM card, smart card). The ATM scenario illustrates the basic concept
of most two-factor authentication systems, i.e., without the combination of both
ATM card and PIN verification, authentication does not succeed.

Finally, it should be stressed that we only sketch the main idea of a noisy-
output policy. However, for practical applications, depending on the real se-
curity requirements, the above policy might be customized, e.g., in Step 1,
instead of choosing randomly one of the smallest entries, and adding 1−Ri to
it, the policy can add to each of the smallest entries a value such that the sum
of all these values is equal to 1−Ri.

8.8 Related work

Our proposal for programs with low input borrows ideas from Malacaria et al.
[62] and Yasuoka et al. [94]. For programs that contain both high and low
inputs, Malacaria et al. and Yasuoka et al. define the information leakage as
follows,

L(C) = H(S |Lin)−H(S |Lin ,O).

In most cases, the high input S is independent of the low input Lin , thus we
can rewrite the above expression as,

L(C) = H(S )−H(S |Lin ,O).

Malacaria et al. define their measure based on Shannon entropy, while Yasuoka
et al. only consider the leakage in the final states.

Basically, Malacaria et al. and Yasuoka et al. fix the initial low value by
assigning it a specific value, and then define the leakage of a program as the
leakage of a single test, while we define it as the maximum leakage of all tests.
Besides, in these works, how to model programs with low input is not mentioned.
Since the analysis is based on the program model, a wrong channel model, as in
the accuracy-based approaches discussed below, would result in counter-intuitive
values of leakage.
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Clarkson et al. [31] argue that the classical uncertainty-based analysis is not
adequate to measure information flow by analyzing the leakage of the same PWC
in Section 8.5.2. Clarkson et al. fix the value of the secret, i.e., the password,
and also the initial low value, i.e., the string that the attacker believes to be the
password, and then analyze information flow under that specific circumstance.

According to [31], the attacker always tries Lin = A1, since he believes
that the password is highly likely to be A1 (with probability 0.98). When the
real password is A3, PWC produces the outcome O = 0 with probability 1.
Therefore, the channel matrix that models this scenario looks like,

O = 1 O = 0
S = A3 0 1

Based on the outcome, the attacker concludes that A2 and A3 each has 0.5
chance of being the password. Thus, initially, the attacker is quite certain about
the value of the password, but after observing the outcome, he is rather uncertain
about it. Therefore, there is an increase in uncertainty, and as a consequence,
the value of leakage is negative, i.e., the classical uncertainty-based analysis
would interpret this negative value as an absence of information flow. However,
Clarkson et al. argue that this result flatly contradicts the intuition. Since
from interacting with PWC, the attacker gains more knowledge by learning
that the password is not A1. Thus, the information flow should be positive.
Therefore, the authors suggest that the classical uncertainty-based measures
are inadequate to quantify information flow. They propose another approach
called accuracy-based analysis. This trend of research has been expanded in
[30, 49, 50, 42].

However, the approach proposed by Clarkson et al. reports a leakage value
that is inconsistent with the size of the flow. For example, consider the above
example. Since cardinality of the password is 3, the maximum size needed to
store the password is log 3 = 1.5849 bits. However, the accuracy-based measure
reports a leakage of 5.6438 bit [30]. Thus, the quantity of the secret information
flow exceeds the size needed to store the secret.

We believe that there is a flaw in the way Clarkson et al. model the system.
Clarkson et al. fix the value of the secret. Thus, this does not capture precisely
the idea of an information-theoretic channel. The information-theoretic channel
has the secret as the input, and the entropy of the input quantifies the uncer-
tainty involved in predicting the value of the secret. Thus, if the value of the
secret is fixed, it implies that the priori distribution on the possible values of
the secret is not valid anymore, i.e., the secret is now a certain value with the
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absolute probability 1. As a consequence, the entropy of the input does not re-
flect the true meaning of the initial uncertainty. Also notice that in information
theory, if the value of a random variable is fixed, then its amount of information
is 0. For example, suppose one transmits 100 bits. If these bits are fixed, i.e.,
they are known ahead of transmission with the absolute probability, informa-
tion theory indicates that no information has been transmitted. If, however,
each bit is equally and independently likely to be 0 or 1, 100 bits have been
transmitted. Therefore, in these approaches, a wrong channel model has led to
misleading results, i.e., a negative uncertainty-based result, or a size-inconsistent
accuracy-based result.

Alvim et al. discuss limitations of the classical information-theoretic channel
by showing that it is not a valid model for interactive systems where secrets and
observables can alternate during the computation and influence each other [6].
In [4], Alvim et al. also discuss the example of the password checker. They fix
the password by assigning it a specific value, and then consider the initial low
values as the only input to the channel. As discussed before, this idea does not
reflect the true idea of the information-theoretic channel.

Köpf et al. also consider systems with low input, i.e., cryptosystems where
the attacker can control the set of input messages [54]. However, their proposal
is only for deterministic systems, i.e., for each input, the system produces only
one output, while in our proposal, the output might be nondeterministic and
probabilistic. Besides, Köpf et al. consider a different threat model, i.e., the
multiple-try guessing model, and they put a restriction on the priori distribution
of the secret, requiring it to be uniform.

Based on Smith’s measure and the point of view of the probability of error
— the probability that the attacker guesses the secret wrongly, Braun et al.
[20] define the leakage as the difference between the probabilities of error of a
priori guess and a posteriori guess, i.e., before and after observing the output.
They define this difference in two different ways: one is multiplicative leakage,
which coincides with Smith’s measure apart from the absence of the logarithm,
and another is additive leakage, which is new. This paper also shows that for
these two measures, the worst case of leakage — the maximum leakage over all
initial distributions of the secret — can be computed easily. Notice that this
paper does not consider the low input, and the maximum leakage is defined by
quantifying over the initial distributions, not over the initial low values, as in
our proposal.

The idea of adding noise to the output comes from differential privacy con-
trol, i.e., the problem of protecting the privacy of database’s participants when
performing statistical queries [4, 5, 3]. The differential privacy control also uses
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some output-perturbation mechanism to report a noisy answer among the cor-
rect ones for the queries. Thus, while the attacker is still able to learn properties
of the population as a whole, he cannot learn the value of an individual. To con-
struct an efficient noisy-output policy for a statistical database, it is necessary
to consider the balance between privacy, i.e., how difficult it is to guess the value
of an individual, and utility, i.e., the capacity to retrieve accurate answers from
the reported ones. In [55], Köpf et al. also explore a similar idea to cope with
timing attacks for cryptosystems, i.e., randomizing each cipher-text before de-
cryption. As a consequence, the strength of the security guarantee is enhanced,
while the efficiency of the cryptosystem is decreased, since the execution time
of the cryptographic algorithm is increased.

8.9 Conclusions

This chapter extended the classical quantitative information flow analysis by
considering a context where programs also contain low input, i.e., an attacker
can set up the initial low values of the program, based on his knowledge about
the private data. We also introduced a new measure — based on the definition
of conditional min-entropy by Cachin — for the notion of remaining uncertainty
in the analysis.

This chapter also pointed out an interesting property of the analysis, namely:
when the output contains noise, the value of leakage might be negative. This
property gives rise to a proposal for a new measure of information flow. Fi-
nally, an efficient noisy-output policy, i.e., adding noise to the output but still
preserving a high overall reliability, was also introduced.

Notice that this model of analysis fixes the scheduler, i.e., we assume that an
attacker cannot choose the scheduler. It makes this analysis more suitable for
sequential programs. Sequential programs contain no parallel operator; thus the
scheduler is not necessary for such programs. For multi-threaded programs, as
mentioned before, it is necessary to consider the effect of the scheduling policy.
Thus, to apply this analysis to the multi-threaded setting, we should extend
the observation of the channel not only to include traces, but also scheduling
decisions at each step. However, this model of channels is complicated, since we
then have to integrate many types of data into the channel. Instead, the next
chapter presents a simple, more efficient analysis for multi-threaded programs.





Chapter 9

Multi-threaded Programs
with the Effect of
Schedulers

9.1 Introduction

This chapter proposes a model that aims to analyze quantitatively information
flow of multi-threaded programs. In this model, we lift the restriction of the
previous chapter that the attacker cannot control the scheduler’s decisions. For
multi-threaded programs, the effect of choices of the scheduler should not be
ignored in the analysis, as illustrated by the following example

Example 9.1 Consider the following program where S is a 2-bit secret variable
with the priori uniform distribution,

O := S/2
∣∣∣∣O := S mod 2.

Assume that the attacker executes this program with a uniform scheduler. Since
S is a uniform 2-bit data, there are 4 possible traces {00, 01, 10, 11} with the
same probability of occurrence.

S 0 1 2 3

T |O
0 0 0 1 1 0 1 1
0 0 1 0 0 1 1 1

149
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If the obtained trace is either 00 or 11, the attacker knows for sure that S is
0, or 3, respectively. However, if the trace is 01 or 10, he is only able to guess
that S is either 1 or 2, with the same probability of success. Thus, with this
scheduler, the secret is not leaked completely.

However, if the attacker chooses a scheduler which always picks O := S/2
first, there are also 4 possible traces {00, 01, 10, 11} with the same probability
of occurrence; but in this case, the attacker can always derive the value of S
correctly.

Thus, to obtain an appropriate model of quantitative information flow anal-
ysis for multi-threaded programs, we need to: (1) consider how public values in
intermediate states help to reduce the attacker’s initial uncertainty about the
private data, (2) take into account the effect of schedulers on the overall leakage
of the program, since the outcomes of a multi-threaded execution depend on
the scheduler’s choices.

The model of analysis presented in this chapter does not follow the tra-
ditional channel-based approaches. Instead, this analysis models the program
execution under the control of a given scheduler by a PKS, where states denote
the probability distributions of private data. Based on this program model, we
define the leakage of an execution trace, i.e., the leakage that can be derived
from a sequence of public data obtained during the program execution. The
program leakage is then given as the expectation of the trace-leakage values.

Organization of the chapter. The remainder of this chapter starts with
a description of the program model. This is a PKS where state labels are
distributions of private data. This model describes the execution of a multi-
threaded program under the control of a scheduler for the analysis. Based on
this program model, in Section 9.3 and Section 9.4, we discuss how trace leakage
and program leakage are computed. Section 9.5 provides a case study, and then
compares our result with the existing channel-based approaches. Section 9.6
discusses a technique for computing the leakage. Section 9.7 discusses related
work, while Section 9.8 concludes the chapter.

Origins of the chapter. The model of analysis presented in this chapter was
published in the proceedings of the 11th International Workshop on Quantitative
Aspects of Programming Languages and Systems (QAPL’13) [66].
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9.2 Program model

In this analysis, instead of the information-theoretic channel, we model the exe-
cution of a multi-threaded program under the control of a probabilistic scheduler
by a variant of the PKS given in Definition 2.2. Basically, the following program
model is a PKS, but it labels states with distributions of the private variable
S , i.e., the labeling function V : S → D(S ) assigns a distribution μ ∈ D(S ) to
each state c ∈ S, describing the attacker’s knowledge about S at each state.

Definition 9.1 (Program model) The program model is a PKS A = 〈S, I,
Var , V,→〉 consisting of (i) a set S of states, (ii) an initial state I ∈ S, (iii) a
finite set of variables Var = H ∪ L, (iv) a labeling function V : S → D(S ),
where S ∈ H , and (v) a transition relation →⊆ S ×D(S).

The distribution of S changes from state to state along a trace, depending
on the public values in the states and the program commands (chosen by the
scheduler) that result in such observables. This idea is sketched by the following
example.

Initially, given that the attacker knows that the value of S is in the set
{0, 1, 2, 3} without any priority, i.e., assuming a priori uniform distribution of
S : π = {0 �→ 1

4 , 1 �→ 1
4 , 2 �→ 1

4 , 3 �→ 1
4}. Consider the program:

O := S/2 ||O := S mod 2.

The scheduler might choose either of the two threads to execute first, and either
of them might result in the same O , e.g., O = 1. If the executed thread is
O := S/2, the updated distribution is {0 �→ 0, 1 �→ 0, 2 �→ 1

2 , 3 �→ 1
2}; otherwise,

it is {0 �→ 0, 1 �→ 1
2 , 2 �→ 0, 3 �→ 1

2}.
Thus, the program is seen a distribution transformer, from the priori distri-

bution of S in the initial state to the final distributions in the final states. By
observing the traces of the distribution transformation, the attackers might be
able to learn information about the initial private data. Our goal is to measure
how much secret information that has been deduced by the attacker based on
these observations.

9.3 Leakage of a program trace

Program C6 (Example 8.7) in Section 8.4.2 shows that the leakage of a trace is
not simply the sum of leakage values of transition steps along the trace. This
section addresses how we can compute a program-trace leakage.
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Example 9.2 Consider again C6,

O := 0;
O := S & (001)b;
O := S & (011)b;

Let (s3s2s1)b denote the binary form of S . We assume that the priori distri-
bution of S is uniform. The execution of this program results in just one trace,
i.e., 〈(000)b〉 −→ 〈(00s1)b〉 −→ 〈(0s2s1)b〉, where a state 〈〉 is represented by the
public value O .

Assume that s2 = 1 and s1 = 1, the obtained trace is

〈(000)b〉 −→ 〈(001)b〉 −→ 〈(011)b〉.

At the initial state 〈(000)b〉, the attacker’s initial uncertainty is represented
by the priori distribution of S , i.e., {0 �→ 1

8 , 1 �→ 1
8 , 2 �→ 1

8 , 3 �→ 1
8 , 4 �→ 1

8 , 5 �→
1
8 , 6 �→ 1

8 , 7 �→ 1
8}. At state 〈(001)b〉, the attacker learns that the last bit of S

is 1. Thus, the distribution of S changes, for example, S cannot be 0. Hence,
the updated distribution at state 〈(001)b〉 is {0 �→ 0, 1 �→ 1

4 , 2 �→ 0, 3 �→ 1
4 , 4 �→

0, 5 �→ 1
4 , 6 �→ 0, 7 �→ 1

4}. Similarly, at the final state 〈(011)b〉, the updated
distribution is {3 �→ 1

2 , 7 �→ 1
2}1.

Based on the final distribution of S , the attacker derives that the value of
S is either 3 or 7. His uncertainty on secret information is reduced by the
knowledge gained from the trace observation.

Since the program is a distribution transformer, the distribution of private
data at the initial state of a trace can present the initial uncertainty of the
attacker about the secret, and the distribution of private data at the final state
can present his final uncertainty, after the trace has been observed. Thus, we
can define the leakage of a program trace as,

Leakage of a program trace = Initial uncertainty - Final uncertainty.

Measure of uncertainty. Given a distribution of private data, the best
strategy of the one-try guessing model is to choose the value with the maximum
probability. ‘Best’ means that this strategy induces the smallest probability of
guessing wrongly. Let S be the set of possible values of S , the value that affects
the notion of uncertainty is maxs∈S p(s). If maxs∈S p(s) = 1, the uncertainty
must be 0, i.e., the attacker already knows the value of S . Thus, the notion

1We leave out the elements that have probability 0.
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of uncertainty is computed as the negation of the logarithm of maxs∈S p(s),
i.e., uncertainty = − log maxs∈S p(s), where the negation is used to ensure the
non-negative uncertainty2.

This measure coincides with the notion of Rényi’s min-entropy. Thus, given
a distribution of S , the attacker’s uncertainty about the secret in this analysis
is: Uncertainty = HRényi (S ).

Therefore, the leakage of a program trace T is,

L(T ) = HRényi (S
i
T )−HRényi (S

f
T ),

where HRényi (S
i
T ) is Rényi’s min-entropy of S with the initial distribution, and

HRényi (S
f
T ) is Rényi’s min-entropy of S with the final distribution, i.e., the

distribution of the secret at the final state in T .
Thus, following our measure, in Example 8.7, L(T ) = − log 1

8−(− log 1
2 ) = 2.

This value matches the intuitive understanding that C6 leaks 2 bits of private
information.

Consider Example 8.6. Assume that s1 = s2 = s3 = 1, the execution of C5
results in the trace 〈(000)b〉 −→ 〈(100)b〉 −→ 〈(011)b〉.

At state 〈(100)b〉, the attacker learns that the first bit of S is 1. Thus,
the distribution of S is {4 �→ 1

4 , 5 �→ 1
4 , 6 �→ 1

4 , 7 �→ 1
4}. At the final state

〈(011)b〉, the distribution is updated to {7 �→ 1}, which is different from the
final distribution given by C6. Hence, L(T ) = − log 1

8 − (− log 1) = 3. This
result also matches the intuition that the attacker is able to derive S precisely
from the execution trace of C5.

Notice that in our approach, instead of the remaining uncertainty, we use
the notion of final uncertainty. Both initial and final uncertainty are denoted
by the same entropy measure, i.e., Rényi’s min-entropy. In addition, the notion
of remaining uncertainty depends only on the public outcomes of the execution,
while the final uncertainty is based on the distribution computed for the final
state, which takes into account the public values in the intermediate states along
the trace, and also the program commands (selected by the scheduler) that result
in such observable values.

9.4 Leakage of a multi-threaded program

The execution of a multi-threaded program C under the control of a scheduler
δ often results in a set of traces Trace(Aδ). Therefore, the leakage of C is

2The quantity of uncertainty is alway non-negative, which is different from the quantity of
information flow.
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computed as the expected value of its trace leakages, i.e.,

L(C, π) =
∑

T∈Trace(Aδ)
p(T ) · L(T )

=
∑

T∈Trace(Aδ)
p(T )(HRényi (S

i
T )−HRényi (S

f
T )).

Since HRényi (S
i
T ) is the same for all T ∈ Trace(Aδ), for notational conve-

nience, we simply write it as HRényi (S
i). Thus, we can rephrase the above

expression as follows,

L(C, π) = HRényi (S
i)−

∑
T∈Trace(Aδ)

p(T ) · HRényi (S
f
T ).

The next section provides a case study showing that this measure is different
from the traditional channel-based approaches, including the one we proposed
in the previous chapter.

9.5 A case study

The following case study illustrates how the leakage of a multi-threaded pro-
gram is computed. It also shows that this model of analysis is more precise for
multi-threaded programs than other measures discussed in the previous chapter.
Consider again Example 8.8 in Section 8.5.2,

O := 0;
{if (O = 1) then O := S/4 else O := S mod 2}

∣∣∣∣O := 1;
O := S mod 4;

where S is a 3-bit unsigned uniform integer.
The execution of this program with a uniform scheduler is modeled by a

PKS A in Figure 9.1. The PKS consists of 20 states that are numbered from
0 (the initial state) to 19. The contents of each state is the value of O in that
state, e.g., in the initial state, the value of O is 0, which corresponds to the first
command of the program: O := 0.

Let C1 and C2 denote the left and right threads. Since we consider the
uniform scheduler, either thread C1 or C2 can be picked next with the same
probability 1

2 . If the scheduler picks C2 before C1, A evolves from state 0 to
state 1, where O = 1. If C1 is picked first, A might evolve from state 0 to either
state 2 or state 3 with the same probability 1

4 . Since the value of O in state 0
is 0, the command O := S mod 2 is executed. Since the possible values of S
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Figure 9.1: Model of the Program Execution

are {0, . . . , 7}, the outcome O might be 0 (state 2) if S ∈ {0, 2, 4, 6}, or 1 (state
3) if S ∈ {1, 3, 5, 7}.

At state 1, A might evolve to either state 4 or state 5 with the same prob-
ability. Since currently, O is 1, the command O := S/4 is executed. Thus, O
might be 0 if S ∈ {0, 1, 2, 3}, or 1 if S ∈ {4, 5, 6, 7}.

The PKS A evolves from one state to another until the execution terminates,
i.e., when the last command O := S mod 4 is executed.

The attacker’s initial uncertainty about S is denoted by the uniform distri-
bution, i.e.,

π = {0 �→ 1

8
, 1 �→ 1

8
, 2 �→ 1

8
, 3 �→ 1

8
, 4 �→ 1

8
, 5 �→ 1

8
, 6 �→ 1

8
, 7 �→ 1

8
}.

At state 1, the distribution of S is still uniform, since the attacker learns
nothing from the command O := 1. At state 4, since the execution of O := S/4
results in 0, the attacker learns that the true value of S must be in the set
{0, 1, 2, 3}, with the same probability. Thus, the updated distribution of S at
this state is:

{0 �→ 1

4
, 1 �→ 1

4
, 2 �→ 1

4
, 3 �→ 1

4
}.
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In the next step, the outcome of O := S mod 4 helps the attacker to derive
S precisely, e.g., at state 8, since O = 0, the distribution of S is:

{0 �→ 1}.

Similarly, the attacker is also able to derive S precisely, basing on the final
distributions at states 9, . . ., 15.

At state 2, the execution of O := S mod 2 results in 0. Thus, the distribu-
tion of S at this state is:

{0 �→ 1

4
, 2 �→ 1

4
, 4 �→ 1

4
, 6 �→ 1

4
}.

This distribution remains unchanged at state 6, since no information is gained
from the execution of O := 1. At state 16, the update distribution of S is:

{0 �→ 1

2
, 4 �→ 1

2
},

since the execution of O := S mod 4 results in 0. The same form of distribu-
tions is also obtained at states 17, 18, 19.

Among the 12 possible traces, 8 traces have the final uncertainty 0, i.e.,
HRényi (S

f
T ) = − log 1 = 0, and the other 4 traces have the final uncertainty

1, i.e., HRényi (S
f
T ) = − log 1

2 = 1. The probability of traces with the final
uncertainty 0, i.e., traces end in state 8, . . ., 15, is equal to the probability of
traces with the final uncertainty 1. Thus, according to this analysis,

L(C, π) = 3− (
1

2
· 0 + 1

2
· 1) = 2.5 (bits).

This value coincides with the real leakage of the program. As discussed
before, the last command O := S mod 4 always reveals the last 2 bits of S ,
and the first bit of S is leaked with the probability 1

2 .

9.5.1 Comparison

In Section 8.5.2, we analyzed this example. According to the traditional ap-
proaches that are based on information-theoretic channels, LCachin (C, π) = 2.53
(bits) (our measure), while LSmith (C, π) = 2.58 (bits) (traditional measure).
These values do not match the real value of leakage. This proposal gives a
more precise quantity of leakage, since it also takes into account the effect of
the scheduler, i.e., the distribution of private data representing the attacker’s
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knowledge depends also on the scheduler’s choice. In particular, the attacker
knows which program-command execution results in the public value in states.

Notice that the measure of the final uncertainty∑
T∈Trace(Aδ)

p(T ) · HRényi (S
f
T )

is similar to Cachin’s conditional min-entropy. In fact, in the information-
theoretic approach, if we also take into account the effect of schedulers, i.e., if
observations in our information-theoretic channel are not only traces, but also
include scheduling decisions at each step, and considering Cachin’s conditional
min-entropy, the measure proposed in the previous chapter coincides with this
approach. However, this model of information-theoretic channel is more compli-
cated than the program model we present here, since we have to include an extra
low variable that models the choice of scheduler, and define how this variable is
updated.

9.6 Technique for computing leakage

Another aspect is to develop a technique for computing the leakage of a multi-
threaded program. The computation consists of two steps. First, the execution
of a multi-threaded program C under the control of a given scheduler is modeled
as a PKS A in a standard way: The states of A are tuples 〈C, V 〉, consisting
of a program fragment C and a valuation V : S → D(S ). The state transition
relation → follows the small-step semantics of C. Based on the executed com-
mand and the obtained public result, the distribution of private data at each
state is derived. We apply Kozen’s probabilistic semantics [56] to present the
transformation of probability distributions of S during the program execution.
The intuition behind state transition relation is that it transforms the input dis-
tribution of S to an output distribution, so that the execution results in traces
of probability distribution of S .

The value of leakage then follows trivially as the difference between the initial
uncertainty and the expected value of the final uncertainties of all traces.

9.7 Related work

As mentioned in the previous chapter, the classical measures might be counter-
intuitive in some situations, and also prone to conflicts when comparing between
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programs. To avoid the conflict, Zhu et al. [98] propose to view the program
execution as a probabilistic state transition system, where states denote proba-
bility distributions of private data. This approach is close to our model in spirit,
but their approach only aims to compare between programs. Their approach
constructs probability distribution functions over the residual uncertainty about
private data, and then the comparison between programs is done via the means
and the variances of the distributions.

The quantitative security analysis proposed by Chen et al. [25] for multi-
threaded programs defines the leakage of each scheduler interleaving. The leak-
age of a program is then given by the expected value over all interleavings.
The basis idea of this approach is that for each interleaving of the scheduler, a
set of possible traces is obtained. Based on the public data of final states on
these traces, the leakage of this interleaving is determined. This approach is
imprecise, since it does not consider leakage in intermediate states and take into
account the distribution of traces in an interleaving.

In another attempt, Chen et al. [26] define the leakage of a program trace
as the sum of the products of the leakage generated by each transition step and
the transition’s probability. Examples in Section 8.4 show that this idea is not
precise. This approach is only suitable to estimate the coarse maximum and
minimum leaks of a program, i.e., the maximal and minimal values of trace-
leakage. However, these values are not very helpful to judge programs, or to
compare between different programs, because the gap between the maximum
and minimum values is often large.

To define the quantitative information flow for multi-threaded programs,
Malacaria et al. [62] and Andrés et al. [9] follow the classical information-
theoretic approach, but the observable data in their approaches are traces of
public variables, instead of only the final public outcomes. Malacaria’s approach
is based on Shannon entropy, while Andrés’s approach uses min-entropy with
Smith’s version of conditional min-entropy. These measures do not give results
close to the real leakage values.

Mu et al. [65] also model the execution of a probabilistic program by a prob-
abilistic state transition system where states represent distributions of private
data. However, the analysis is only for sequential programs.

9.8 Conclusions

This chapter proposed a novel approach to estimate the leakage of a multi-
threaded program. Instead of using the traditional information-theoretic chan-
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nel, this approach models the execution of a multi-threaded program under the
control of a scheduler by a probabilistic state transition system. States of the
transition system are labeled with probability distributions of private data. This
distribution reflects the attacker’s knowledge about the secret value. The dis-
tribution of private data changes from state to state along a trace, depending
on the relation between private data and public data, and also on the command
executions resulting in such public data. In comparison with the channel-based
models of security analysis, we believe that this approach gives a more accu-
rate way to study quantitatively the security of multi-threaded programs, i.e.,
it agrees with the intuition about the real leakage values. Notice that the idea
of low input and noisy output in the previous chapter can also be applied to
this program model.





Chapter 10

Conclusions

This chapter provides an overall conclusion of the thesis. We summarize each
part of this thesis, together with a discussion of its contributions. We end this
thesis with ideas for future work.

10.1 Thesis summary

Qualitative information flow properties. This thesis presented scheduler-
specific definitions of observational determinism: scheduler-specific observa-
tional determinism (SSOD) and scheduler-specific probabilistic observational
determinism (SSPOD) properties. We showed that these formalizations capture
the intuitive idea of confidentiality for multi-threaded programs more precisely
than other formalizations in the literature.

SSOD gives a formalization of a confidentiality property for non-deterministic
multi-threaded programs. If the execution of a program under the control of
a certain scheduler is accepted by SSOD, no secret information can be derived
from the publicly observable data traces, and also from the relative ordering of
low-variable updates.

SSPOD considers also the probabilistic behavior of the execution, and thus
makes this property usable in a larger context. It is important to consider
the probabilistic property, since this captures the realistic behavior of multi-
threaded programs.

To avoid refinement attacks, where an attacker chooses a suitable schedul-
ing policy to refine the set of possible program traces, the security specification

161
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should be scheduler-independent. Therefore, this thesis also proposed a defini-
tion of scheduler-independent observational determinism. This is derived from
the scheduler-specific definitions by quantifying them over all possible schedul-
ing policies. If a program is accepted by the scheduler-independent security
property, it guarantees that no private information is leaked, regardless of any
scheduling policy used to deploy the program.

Property verification and attack synthesis. To check whether secret in-
formation has been leaked, this thesis developed methods to verify automatically
whether the program execution satisfies the confidentiality properties. First, we
explored the approach of logic-based verification based on self-composition. We
found that the compliance with SSOD can be verified by checking its temporal
logic characterization. The characterization is developed in two steps: first we
characterize stuttering equivalence, which serves as the basis of SSOD, and then
we characterize the SSOD conditions. This results in a conjunction of an LTL
and a CTL formula. This characterization is an important step towards model
checking observational determinism properties.

Besides relying on existing temporal logic verification tools, this thesis also
developed direct algorithmic verification methods for both SSOD and SSPOD.
The verification uses a combination of new and existing algorithms. The new al-
gorithms solve standard problems, i.e., checking all-trace stuttering equivalence
of a Kripke structure that models the program execution and stuttering-trace
equivalence between Kripke structures, which makes them applicable also in a
broader context, outside the security scenarios. The advantage of algorithmic
model-checking methods is that they can generate counter-examples when the
verification fails. We extend our algorithms for this purpose, i.e., presenting
counter-examples to synthesize information leaking attacks.

The algorithmic verification techniques together with the attack synthesis
methods are implemented as a part of the LTSmin tool set. We provide case
studies to show the feasibility of the algorithmic approaches and the practical
application of the tool.

Quantitative information flow analysis. In case private data have been
leaked, this thesis also discussed how to quantify this information flow. The
classical quantitative analysis of information flow only considers simple cases
where the only input is the secret. This thesis extended this context by consid-
ering applications that contain both low and high input, i.e., programs where
an attacker can interact with the initial public values. For such programs, we
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adapted the traditional analysis by considering the initial low values as param-
eters of the channel that models the program execution. Via our analysis, we
also discussed an important property of the information flow, i.e., the quantity
of information flow might be negative in case the output contains noise, i.e.,
the system secretly generates noisy outcomes. In this context, the noise might
mislead the attacker’s belief about the private data, and thus, it increases his
final uncertainty. We believe that this property would change the way people
often think about how to appropriately measure the notion of uncertainty. We
also discussed how to design an efficient noisy-output policy, which generates
noisy outcomes, while still guaranteeing the system a high overall reliability.

Our quantitative analysis of information flow also proposed to consider
Cachin’s conditional min-entropy as an (optional) measure for the notion of
the remaining uncertainty. In the literature, it has been suggested that there
might be different measures of information leakage for different scenarios. We
showed that our new measure agreed with the intuition about what the leakage
should be in many cases. This measure has not previously been used in the
theory of quantitative information flow.

In addition, this thesis also proposed a novel model of analyzing quanti-
tatively information flow of multi-threaded programs For multi-threaded pro-
grams, it is necessary to consider the scenario that the attacker is able to select
an appropriate scheduler to control the execution. For this context, we do not
follow the traditional information-theoretic approaches, but model the program
execution by a probabilistic transition system, where states denote the probabil-
ity distributions of private data. In this approach, the notion of program-trace
leakage is defined; and then the leakage of a program is given as the expectation
of all trace-leakage values. Via a case study, we show that this approach gives
a more accurate result than the traditional information-theoretic approaches.
Thus, we consider this as an important contribution in the field of quantitative
security analysis for multi-threaded programs.

10.2 Future work

Qualitative information flow analysis. Based on the work presented in
this thesis, we see several directions for future work. It would be interesting
to see if the verification algorithms for scheduler-specific confidentiality prop-
erties can be further optimized for particular classes of schedulers, e.g., for all
round robin schedulers. Another direction for future work is to run the attack
synthesis for scheduling policies, i.e., to find a set of schedulers that execute
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a given program securely, or a set of schedulers that can break the program’s
confidentiality.

It would also be interesting to continue the study of other security properties,
i.e., anonymity, integrity, and availability. We think that the same approach of
adapting existing model checking algorithms are also feasible to efficiently and
precisely verify these properties.

Quantitative information flow analysis. Since there are many measures
proposed for quantitative information flow analysis, and no unique measure is
likely to suit all contexts, it might be interesting to evaluate each measure to
determine under which circumstances, a certain measure might give the best
answer.

Besides, it is also interesting to propose a measure for the multiple-try guess-
ing model, i.e., when the current guess fails, the attacker might update his
knowledge about the secret to make a new guess.

Finally, the existing quantitative information flow analysis of the one-try
guessing model is only based on the value that the attacker believes to be the
secret. Thus, the analysis ignores the extra useful information that might be
derived from the information about the values that are not chosen by the at-
tacker. For example, given two posteriori distributions π = {p(S = A|O =
Z) = 0.5, p(S = B|O = Z) = 0.5, p(S = C|O = Z) = 0} and π′ = {p(S =
A|O = Z) = 0.5, p(S = B|O = Z) = 0.25, p(S = C|O = Z) = 0.25}. The
traditional analysis does not distinguish between these two distributions, since
the maximum probabilities are 0.5 in both.

Following the idea of the one-try guessing model, the attacker would guess
the secret to be A with the confidence 0.5 in both cases. If his guess is correct,
he gets the secret. However, consider the case when he makes a wrong guess. If
the posteriori probability is π, the attacker now knows for sure that the secret
is B — notice that this is still the one-try guessing model, since the attacker
does not make another guess. If the obtained posteriori probability is π′, he
only derives that B and C each has a 50% chance of being the secret. Thus,
in case the guess is wrong, the attacker’s knowledge about the secret changes
differently for the two distributions, i.e., π = {p(S = A|O = Z) = 0, p(S =
B|O = Z) = 1, p(S = C|O = Z) = 0} and π′ = {p(S = A|O = Z) = 0, p(S =
B|O = Z) = 0.5, p(S = C|O = Z) = 0.5}. Hence, these two distributions
should be considered differently in the analysis.

Therefore, we believe that the traditional analysis based on the notion of
uncertainty does not give a complete answer to the problem of analyzing quan-
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titatively information flow of a system. Future work may explore whether it
is useful to also include the attacker’s disbelief, i.e., the information about the
values that the attacker disbelieves to be the secret, to the model of analysis.
This might help to distinguish two systems that are indistinguishable by the tra-
ditional approaches, but obviously, one leaks more information than the other;
and also give results that are closer to the real leakage values.
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[2] R. Alur, P. Černy, and S. Chaudhuri. Model checking on trees with path
equivalences. In Proceedings of the 13th international conference on Tools
and algorithms for the construction and analysis of systems, TACAS’07,
pages 664–678. Springer-Verlag, 2007.

[3] M.S. Alvim, M.E. Andrés, K. Chatzikokolakis, P. Degano, and
C. Palamidessi. Differential privacy: on the trade-off between utility and
information leakage. CoRR, abs/1103.5188, 2011.

[4] M.S. Alvim, M.E. Andrés, K. Chatzikokolakis, and C. Palamidessi. Foun-
dations of security analysis and design vi. chapter Quantitative informa-
tion flow and applications to differential privacy, pages 211–230. Springer-
Verlag, 2011.

[5] M.S. Alvim, M.E. Andrés, K. Chatzikokolakis, and C. Palamidessi. On the
relation between differential privacy and quantitative information flow. In
Proceedings of the 38th international conference on Automata, languages
and programming - Volume Part II, ICALP’11, pages 60–76. Springer-
Verlag, 2011.

[6] M.S. Alvim, M.E. Andrés, and C. Palamidessi. Information flow in in-
teractive systems. In Proceedings of the 21st international conference on
Concurrency theory, CONCUR’10, pages 102–116. Springer-Verlag, 2010.

[7] M.S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring
information leakage using generalized gain functions. In Proceedings of

169



170 Bibliography

the 2012 IEEE 25th Computer Security Foundations Symposium, CSF’12,
pages 265–279. IEEE Computer Society, 2012.

[8] M.E. Andrés, P. D’Argenio, and P. Rossum. Significant diagnostic coun-
terexamples in probabilistic model checking. In Proceedings of the 4th In-
ternational Haifa Verification Conference on Hardware and Software: Ver-
ification and Testing, HVC’08, pages 129–148. Springer-Verlag, 2009.

[9] M.E. Andres, C. Palamidessi, P. Rossum, and A. Sokolova. Information
hiding in probabilistic concurrent systems. In Proceedings of the 2010 Sev-
enth International Conference on the Quantitative Evaluation of Systems,
QEST’10, pages 17–26. IEEE Computer Society, 2010.

[10] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In Proceedings of the 13th Eu-
ropean Symposium on Research in Computer Security: Computer Security,
ESORICS’08, pages 333–348. Springer-Verlag, 2008.

[11] A. Askarov and A. Sabelfeld. Tight enforcement of information-release
policies for dynamic languages. In Proceedings of the 2009 22Nd IEEE
Computer Security Foundations Symposium, CSF’09, pages 43–59. IEEE
Computer Society, 2009.

[12] T.H. Austin and C. Flanagan. Efficient purely-dynamic information flow
analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security, PLAS’09, pages 113–124.
ACM, 2009.

[13] T.H. Austin and C. Flanagan. Permissive dynamic information flow analy-
sis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS’10, pages 3:1–3:12. ACM, 2010.

[14] C. Baier and M. Kwiatkowska. On the verification of qualitative properties
of probabilistic processes under fairness constraints. Information Processing
Letters, 66:71–79, 1998.

[15] G. Barthe, P.R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proceedings of the 17th IEEE workshop on Computer Se-
curity Foundations, CSFW’04, pages 100–114. IEEE Computer Society,
2004.



Bibliography 171

[16] G. Barthe and L.P. Nieto. Formally verifying information flow type systems
for concurrent and thread systems. In Proceedings of the 2004 ACM work-
shop on Formal methods in security engineering, FMSE’04, pages 13–22.
ACM, 2004.

[17] S. Blom and S. Orzan. A distributed algorithm for strong bisimulation re-
duction of state spaces. International Journal on Software Tools for Tech-
nology Transfer, 7:74–86, 2005.

[18] S. Blom, J. van de Pol, and M. Weber. LTSmin: distributed and symbolic
reachability. In Proceedings of the 22nd international conference on Com-
puter Aided Verification, CAV’10, pages 354–359. Springer-Verlag, 2010.

[19] H.-C. Blondeel. Security by logic: characterizing non-interference in tem-
poral logic. Master’s thesis, KTH Sweden, 2007.

[20] C. Braun, K. Chatzikokolakis, and C. Palamidessi. Quantitative notions
of leakage for one-try attacks. Electronic Notes in Theoretical Computer
Science, 249:75–91, August 2009.

[21] C. Cachin. Entropy Measures and Unconditional Security in Cryptography.
PhD thesis, 1997.

[22] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Anonymity pro-
tocols as noisy channels. In Proceedings of the 2nd international conference
on Trustworthy global computing, TGC’06, pages 281–300. Springer-Verlag,
2007.

[23] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[24] M. Chechik and A. Gurfinkel. A framework for counterexample generation
and exploration. International Journal on Software Tools for Technology
Transfer, 9:429–445, 2007.

[25] H. Chen and P. Malacaria. Quantitative analysis of leakage for multi-
threaded programs. In Proceedings of the 2007 workshop on Programming
languages and analysis for security, PLAS’07, pages 31–40. ACM, 2007.

[26] H. Chen and P. Malacaria. The optimum leakage principle for analyzing
multi-threaded programs. In Proceedings of the 4th international confer-
ence on Information theoretic security, ICITS’09, pages 177–193. Springer-
Verlag, 2010.



172 Bibliography

[27] L. Christoff and I. Christoff. Efficient algorithms for verification of equiv-
alences for probabilistic processes. In Proceedings of the 3rd Interna-
tional Workshop on Computer Aided Verification, CAV’91, pages 310–321.
Springer-Verlag, 1992.

[28] D. Clark, S. Hunt, and P. Malacaria. Quantitative information flow, rela-
tions and polymorphic types. Journal of Logic and Computation, 15:181–
199, 2005.

[29] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient gen-
eration of counterexamples and witnesses in symbolic model checking. In
Proceedings of the 32nd annual ACM/IEEE Design Automation Confer-
ence, DAC’95, pages 427–432. ACM, 1995.

[30] M.R. Clarkson, A.C. Myers, and F.B. Schneider. Quantifying information
flow with beliefs. Journal of Computer Security 2009.

[31] M.R. Clarkson, A.C. Myers, and F.B. Schneider. Belief in information
flow. In Proceedings of the 18th IEEE workshop on Computer Security
Foundations, CSFW’05, pages 31–45. IEEE Computer Society, 2005.

[32] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, STOC’87, pages 1–6. ACM, 1987.

[33] T.H. Cormen, C. Stein, R.L. Rivest, and C.E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
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Samenvatting

In de hedendaagse informatiemaatschappij speelt informatiebeveiliging een be-
langrijke rol in bijna alle aspecten van het dagelijks leven: communicatie tussen
overheden en burgers, militaire zaken, bedrijven, financiële informatiesystemen,
webgebaseerde services enz. Tegelijkertijd met de toenemende populariteit van
computersystemen met meerdere processoren (CPUs), alsmede processoren met
meerdere kernen (cores), is ook multithreaded programmeren geaccepteerd als
een standaardconcept, waarbij het programma meerdere berekeningen tegelijk-
ertijd kan uitvoeren. Er zijn echter nog veel uitdagingen bij het ontwikkelen van
technieken die privé-gegevens in multithreaded programma’s kunnen bescher-
men. Ten eerste, bij het uitvoeren van een multithreaded programma komt het
vaak voor dat het gedrag van de data onvoorspelbaar is: daardoor is het lastig
te voorspellen welke gegevens een aanvaller kan waarnemen. Ten tweede, met
de ontwikkeling van krachtige computertechnieken, groeit ook de kracht van de
aanvaller. Hoewel hier al veel onderzoek naar is gedaan, kunnen de huidige tech-
nieken niet voldoende bescherming (confidentiality) garanderen van gegevens in
multithreaded programma’s.

Het doel van dit proefschrift is om meer geschikte en efficiënte methoden te
ontwikkelen die de informatiestromen in een multithreaded programma kunnen
analyseren. We formaliseren twee kwalitatieve eigenschappen van vertrouweli-
jkheid: (1) voor nondeterministische programma’s, waarbij geen rekening wordt
gehouden met het probabilistische gedrag van het programma, en (2) voor prob-
abilistische programma’s, waarbij we er van uit gaan dat we kennis hebben over
de kansverdeling van de schedulingstappen. We ontwikkelen ook een verifi-
catiemethode om te kunnen verifiëren dat er geen informatie wordt gelekt. De
voorgestelde technieken kunnen niet alleen de vertrouwelijkheid nauwkeurig en
efficiënt verifiëren, maar ze blijken ook relevant te zijn buiten het gebied van in-
formatiebeveiliging. Alle technieken zijn gëımplementeerd in onze tool, waarmee
we vervolgens in een aantal case studies de toepasbaarheid van onze technieken
laten zien.

Ten tweede kijken we verder naar programma’s die privé-gegevens lekken.
Voor deze programma’s is het van groot belang om de juiste hoeveelheid (kwan-
titeit) van de gelekte informatie te kunnen bepalen. Daarvoor bestuderen we
kwantitatieve beveiligingseigenschappen. Dit zijn sterkere eigenschappen dan de
traditionele kwantitatieve eigenschappen, aangezien de hoeveelheid informatie
die gelekt wordt, gebruikt kan worden om te beslissen of minder lekkage te tol-
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ereren is. We introduceren twee nieuwe modellen voor kwantitatieve analyse
van informatiestromen: (1) een model voor een programma waarin de aanvaller
de initiële waarden van publieke gegevens kan bëınvloeden, en (2) een model
voor een programma waarin de aanvaller de uitvoeringsvolgorde van de threads
kan bepalen.
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